Temporal Dynamics of Phytoplankton in Retention Pond as a Water Source for Striped Catfish (Pangasianodon hypophthalmus) Farming

Orbita Roiyan Dhuha, Yuni Puji Hastuti, Albert Gamot Malau

Abstract


This comprehensive study investigates the temporal dynamics and ecological aspects of phytoplankton communities in water reservoirs utilized for Pangasius cultivation. Over a six-week observation period, 25 phytoplankton species, including Bacillariophyceae, Chlorophyceae, Cyanophyceae, Euglenophyceae, and Cryptophyceae, were identified. Chlorophyceae displayed the highest species richness, emphasizing the dominance of this group, particularly Chlorella, which remained stable throughout weekly observations. Other taxa, such as Euglenophyceae, exhibited delayed increases in density. The study revealed two crucial groups in the water reservoir: the first, composed of Actinastrum sp., Closterium sp., Staurastrum sp. (Chlorophyceae), Navicula sp., Pleurosigma sp., Schroedaria sp., Surirella sp. (Bacillariophyceae), and the second, more diverse group consisting of Nitzschia sp. (Bacillariophyceae), Cryptomonas sp. (Cryptophyceae), Trachelomonas sp. (Euglenophyceae), Anabaena sp., Merismopedia sp., Phormidium sp. (Cyanophyceae), Ankistrodesmus sp., Chlorella sp., and Crucigenia sp. (Chlorophyceae). Chlorella was consistently present which was observed to interact with various species, fostering a balanced environment for growth and reproduction within its family and across others based on network analysis. Contradictory dynamics emerge in the initial weeks, where the highest species richness (N = 19 species) coincides with a high dominance index (1/D = 0.54). Conversely, the peak diversity index (H’ = 2.04) occurs during the second observation, aligning with a comparable evenness index (J = 0.89). The saprobic index indicates a shift in pollution levels from β-mesosaprobic to α/β-mesosaprobic between the initial and final weeks of observation. Simultaneously, trophic-saprobic index alterations signify an environmental quality transition from polysaprobic to oligosaprobic. This presents contradictory trends, where, based on species richness, the environment is ecologically classified as polluted. However, considering the contribution of non-indicator groups in the formula, the pond conditions shift towards nutrient impoverishment, suggesting potential suitability for aquaculture practices.

Keywords


α/β-mesosaprobic, Chlorella, Chlorophyceae, network analysis, oligosaprobic, reservoir

Full Text:

PDF

References


[APHA] American Public Health Association. (2022). APHA Standard Methods for The Examination of Water and Wastewater 24th. United States.

Abedin, M. J., Bapary, M. A. J., Rasul, M. G., Majumdar, B. C., & Haque, M. M. (2017). Water quality parameters of some Pangasius ponds at Trishal Upazila, Mymensingh, Bangladesh. European Journal of Biotechnology and Bioscience, 5(2), 29-35.

Ahmad, M. T., Shariff, M., Md. Yusoff, F., Goh, Y. M., & Banerjee, S. (2020). Applications of microalga Chlorella vulgaris in aquaculture. Reviews in Aquaculture, 12(1), 328-346.

Alam, M. G. M., Jahan, N., Thalib, L., Wei, B., & Maekawa, T. (2001). Effects of environmental factors on the seasonally change of phytoplankton populations in a closed freshwater pond. Environment International, 27(5), 363-371.

Angela, D., Arbi, S., Natrah, F. M., Widanarni, W., Pande, G. S. J., & Ekasari, J. (2021). Evaluation of Chlorella sp. and Ankistrodesmus sp. addition on biofloc system performance in giant prawn culture. Aquaculture Research, 52(12), 6052-6062.

Azani, N., Abol-Munafi, A. B., Liew, H. J., Kamarudin, S., Arshad, A., Hassan, M. M., ... & Rasdi, N. W. (2022). Different dietary effects on growth and reproduction of freshwater zooplankton Ceriodaphnia cornuta (Sars, 1885) and its potential use in Pangasius nasutus larval rearing. International Aquatic Research, 14(3).

Basavaraja, D., Narayana, J., Puttaiah, E. T., & Prakash, K. (2013). Phytoplankton species diversity indices in Anjanapura reservoir, Western Ghat region, India. Journal of Environmental Biology, 34(4), 805.

Borges, P. A. F., Train, S., & Rodrigues, L. C. (2008). Spatial and temporal variation of phytoplankton in two subtropical Brazilian reservoirs. Hydrobiologia, 607, 63-74.

D'Alessandro, E. B., Nogueira, I. D. S., & Hoffmann, N. K. S. D. A. (2020). Variability in phytoplankton community structure and influence on stabilization pond functioning. Revista Ambiente & Água, 15.

Dresscher, T. G., & Van der Mark, H. (1976). A simplified method for the biological assessment of the quality of fresh and slightly brackish water. Hydrobiologia, 48(3), 199-201.

Effendi, H., Kawaroe, M., Lestari, D. F., & Permadi, T. (2016). Distribution of phytoplankton diversity and abundance in Mahakam Delta, East Kalimantan. Procedia Environmental Sciences, 33, 496-504.

Gilles, S., Fargier, L., Lazzaro, X., Baras, E., De Wilde, N., Drakides, C., ... & Blancheton, J. P. (2013). An integrated fish–plankton aquaculture system in brackish water. Animal, 7(2), 322-329.

Halder, P., Debnath, M., & Ray, S. (2019). Occurrence and diversity of microalgae in phytoplankton collected from freshwater community ponds of Hooghly District, West Bengal, India. Plant Science Today, 6(1), 8-16.

Hammer, Ø., & Harper, D. A. (2001). Past: paleontological statistics software package for educaton and data anlysis. Palaeontologia electronica, 4(1), 1.

Hasibuan, S., Syafriadiman, S., Aryani, N., Fadhli, M., & Hasibuan, M. (2023). The age and quality of pond bottom soil affect water quality and production of Pangasius hypophthalmus in the tropical environment. Aquaculture and Fisheries, 8(3), 296-304.

Hassall, C. (2014). The ecology and biodiversity of urban ponds. Wiley Interdisciplinary Reviews: Water, 1(2), 187-206.

Khanna, P., Kaur, A., & Goyal, D. (2019). Algae-based metallic nanoparticles: Synthesis, characterization and applications. Journal of microbiological methods, 163, 105656.

Khemakhem, H., Elloumi, J., Moussa, M., Aleya, L., & Ayadi, H. (2010). The concept of ecological succession applied to phytoplankton over four consecutive years in five ponds featuring a salinity gradient. Estuarine, Coastal and Shelf Science, 88(1), 33-44.

Jindal, R. (2005). Diurnal variations in plankton in relation to hydrobiological factors of a freshwater pond. Proc Zool Soc Calcutta, India, 58(1), 43-49.

Maznah, W. O. W., & Makhlough, A. (2015). Water quality of tropical reservoir based on spatio-temporal variation in phytoplankton composition and physico-chemical analysis. International Journal of Environmental Science and Technology, 12, 2221-2232.

Naselli-Flores, L., & Barone, R. (2000). Phytoplankton dynamics and structure: a comparative analysis in natural and man-made water bodies of different trophic state. Hydrobiologia, 438, 65-74.

Nhut, N., Hao, N. V., Bosma, R. H., Verreth, J. A. V., Eding, E. H., & Verdegem, M. J. (2019). Options to reuse sludge from striped catfish (Pangasianodon hypophthalmus, Sauvage, 1878) ponds and recirculating systems. Aquacultural Engineering, 87, 102020.

Pal, R., & Choudhury, A. K. (2014). An Introduction to Phytoplanktons: Diversity and Ecology (No. 14781). New Delhi: Springer India.

Phan, L. T., Bui, T. M., Nguyen, T. T., Gooley, G. J., Ingram, B. A., Nguyen, H. V., ... & De Silva, S. S. (2009). Current status of farming practices of striped catfish, Pangasianodon hypophthalmus in the Mekong Delta, Vietnam. Aquaculture, 296(3-4), 227-236.

Rahman, M. M., Jewel, M. A. S., Khan, S., & Haque, M. M. (2007). Study of Euglenophytes Bloom and it's Impact on Fish Growth in Bangladesh. Algae, 22(3), 185-192.

Ramadhan, A., Suwandi, R., & Trilaksani, W. (2016). Competitiveveness strategies of Indonesia Pangasius fillet. Indonesian Journal of Business and Entrepreneurship (IJBE), 2(2), 82-82.

Rojas-Tirado, P., Pedersen, P. B., Vadstein, O., & Pedersen, L. F. (2018). Changes in microbial water quality in RAS following altered feed loading. Aquacultural engineering, 81, 80-88.

Sipaúba-Tavares, L. H., Donadon, A. R. V., & Milan, R. N. (2011). Water quality and plankton populations in an earthen polyculture pond. Brazilian Journal of Biology, 71, 845-855.

Siregar, Z. A., Anggoro, S., Irianto, H. E., & Purnaweni, H. (2023). A Saprobic Index for quality of Minapadi Water and the Fish Osmotic Performance Level of Minapadi. In E3S Web of Conferences (Vol. 448, p. 03062). EDP Sciences.

Stevenson, J. (2014). Ecological assessments with algae: a review and synthesis. Journal of Phycology, 50(3), 437-461.

Tran, N., Rodriguez, U. P., Chan, C. Y., Phillips, M. J., Mohan, C. V., Henriksson, P. J. G., ... & Hall, S. (2017). Indonesian aquaculture futures: An analysis of fish supply and demand in Indonesia to 2030 and role of aquaculture using the AsiaFish model. Marine Policy, 79, 25-32.

Turker, H., Eversole, A. G., & Brune, D. E. (2003). Filtration of green algae and cyanobacteria by Nile tilapia, Oreochromis niloticus, in the Partitioned Aquaculture System. Aquaculture, 215(1-4), 93-101.

Utkilen, H., & Gjølme, N. (1992). Toxin production by Microcystis aeruginosa as a function of light in continuous cultures and its ecological significance. Applied and environmental microbiology, 58(4), 1321-1325.

Vu, N. U., & Huynh, T. G. (2020). Optimized live feed regime significantly improves growth performance and survival rate for early life history stages of pangasius catfish (Pangasianodon hypophthalmus). Fishes, 5(3), 20.

Wang, C., Zhao, Y., Du, P., Ma, X., Li, S., Li, H., ... & Xiao, T. (2022). Planktonic ciliate community structure and its distribution in the oxygen minimum zones in the Bay of Bengal (eastern Indian Ocean). Journal of Sea Research, 190, 102311.

Wirth, C., Limberger, R., & Weisse, T. (2019). Temperature× light interaction and tolerance of high water temperature in the planktonic freshwater flagellates Cryptomonas (Cryptophyceae) and Dinobryon (Chrysophyceae). Journal of Phycology, 55(2), 404-414.




DOI: http://dx.doi.org/10.15578/bjsj.v6i1.13731

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




Creative Commons License
Buletin Jalanidhitah Sarva Jivitam is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats
ISSN Print: 1978-032X, ISSN Online: 2716-2554

POLITEKNIK AHLI USAHA PERIKANAN
BADAN RISET DAN SUMBER DAYA MANUSIA KELAUTAN DAN PERIKANAN
KEMENTERIAN KELAUTAN DAN PERIKANAN

View My Stats

 Index by


 

Location: