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ABSTRACT

Lipid and fatty acid profiles were described for copepod nauplii Apocyclops
panamensis from fertilized brackish water ponds, and after being acclimated to full-
sea water salinity. Mean total lipid content of copepod nauplii collected from ponds
fertilized with inorganic fertilizer combined either with alfalfa meal, rice bran, wheat
bran, and a combination of these fertilizers ranged from 5.66 ± 0.15 to 7.76% ± 0.27%.
Non-polar (neutral) lipid fraction of pond copepod nauplii was a significantly higher
percentage of the total lipid content (74.5 ± 1.8 - 93.5% ± 1.0%) compared to those of
polar lipid (6.5 ± 1.0 - 21.3% ± 1.8%) (P= 0.000). DHA/EPA ratio in neutral lipids ranged
from 1.8 ± 0.2 - 2.0 ± 0.1 with no significant differences in three fertilization regimes.
DHA was 27.5% ± 0.56% of the neutral lipids and EPA 14.8% ± 0.8%. Acclimation of
copepod nauplii for six hours from brackish to full-sea water salinity reduced their
lipid content and individual dry weight significantly. Mean total lipid content was
reduced 44.2%, non-polar lipid was reduced 46.9% and polar lipid was reduced 24.4%.
Acclimation altered the DHA/EPA ratio, in the neutral fraction the ratio increased
26.3% but in the polar fraction it decreased 25%.
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Although the importance of copepods as a
live food for larval marine fish has been
recognized, laboratory techniques are not well
established for their mass production and the
densities that have been obtained are
relatively low (Stottrup et al., 1998). Producing
copepods under a controlled environment
requires complex facilities and sophisticate
skill (Stottrup & Norsker, 1997) and may not be
economical for certain hatchery applications.
An alternative approach to obtain large
quantity of live food organisms is to collect
zooplankton from ponds. Outdoor tanks and
ponds given both organic and chemical
fertilizers have been used for copepod
production (Colura et al., 1987; Ohno &
Okamura, 1988; Harrell % Bukowski, 1990; Doi
et al., 1994b; Bootes, 1998). By using various
combinations of organic and chemical
fertilizers, these workers were able to produce
copepod nauplii and adult copepods with
maximum densities up to 1,225 individuals/L

INTRODUCTION

Copepod nauplii have been used as a food
for the culture of a number of marine finfish
larvae resulting in increased performance of
the larvae (Taniguchi et al., 1982; van der
Meeren & Naess, 1993; Nanton & Castell, 1999;
Toledo et al., 1999). Daily specific growth rates
of cod Gadus morhua have been shown to
greatly increase from 2.8% to 21% with an
increase in availability of copepod nauplii (van
der Meeren & Naess, 1993). Survival of turbot
Scophthalmus maximus  larvae was 73% when
fed Artemia nauplii, and 93% when fed
copepod nauplii (Kuhlman et al., 1979).
Copepod nauplii contain suitable amounts of
essential elements needed for the survival and
growth of fish larvae. In particular, copepods
often contain a higher amount of highly
unsaturated fatty acids making them nutritional
better than other live food items (Stottrup &
Norsker, 1997; Stottrup et al., 1998).
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and 679 individuals/L, respectively within
three to 33 days. Nystrom (1999) and Lan (2001)
developed trapping techniques to collect
copepod nauplii from ponds that were able to
trap 167,000—690,000 copepod nauplii per
hour. The advantages of extensive culture of
copepod are that it can be an inexpensive and
practical method to provide a large number of
nauplii. However, there is often considerable
variation in zooplankton composition and
abundance from pond to pond. The pond
environment may differ in salinity and other
environmental parameters relative to the
settling where the food organism is to be given
as a food.

A given species of copepod may be found
over a range of salinities. The cyclopoid
copepod Apocyclops occurs at salinities below
30 ppt (Cheng et al., 2001), they can thrive in
water with salinities up to 69 ppt (Dexter, 1993).
However, there is little information as to how
salinity changes may directly or indirectly
affect the nutritional characteristics of
copepods. Changes in salinity can affect food
sources and the nutritional profile of the
copepods. Furthermore, changes in salinity
stimulate crustaceans to adjust their
osmoregulation. It has been observed in adult
calanoid copepod Eurytemora affinis and zoea
1 of decapod crustacean larvae Cancer
pagurus, Homarus gammarus, Carcinus
maenas, and Chasmagnathus granulata that
extracellular osmoregulation is associated with
energy expenditure as part of active ion
transport, involving degradation of energy-rich
compounds such as lipid and protein (Gonzales
& Bradley, 1994; Kimmel & Bradley, 2001;
Torres et at., 2002). When copepod nauplii are
to be used as feed for larval fish, changes in
salinity may affect their nutrient quality.

This present study was designed to
evaluate fatty acid profiles of cyclopoid
copepod nauplii Apocyclops panamensis
harvested from brackish water ponds fertilized
using different preparation protocols, as well
as after acclimation into full-strength sea water
salinity.

MATERIALS AND METHODS

Production and Collection of Copepod
Nauplii

Fatty acid profiles were determined for
copepod nauplii Apocyclops panamensis
collected from brackish water ponds fertilized

with rice, wheat bran or a mixture of organic
fertilizers. Ponds fertilized with either rice bran
or wheat bran received an initial application of
250 kg/ha along with two liquid fertilizers 32-
2-0 (N:P:K) and 10-34-0 combined to give a 38-
8-0 and applied at an initial dose of 20 L/ha.
Three ponds were used for each type of
organic fertilizer. Ponds were subsequently
given half initial dose of both organic and
inorganic fertilizers weekly.

An additional pond was prepared initially
fertilized with 50 kg/ha of each of the following
organic fertilizers: alfalfa meal, menhaden fish
meal and rice bran. In addition, two liquid
fertilizers of 32-2-0 (N:P:K) and 10-34-0 were
combined to give a 38-8-0 and the combination
was applied to each pond at initial dose of 20
L/ha. This pond was subsequently given at
half the initial dose of both organic and
inorganic fertilizers weekly. Organic fertilizers
were applied to the pond bottom just before
filling with 300 µm mesh sock-filtered 12 ppt
brackish water while the liquid fertilizer was
applied when the pond was full.

The ponds were sampled for zooplankton
every morning (0700—0900 h) taking a 25 L
composite sample of pond water. The sample
was concentrated over a 35-mm Nitex®
plankton net and the volume adjusted to one
liter and fixed in Lugol’s solution.  Zooplankton
were enumerated as to the abundance per liter
of copepod nauplii, adult copepods, rotifers
and other organisms using a binocular
Olympus® CH-30 microscope at magnification
of 10x4 and a 1 mL modified plastic-grid
Sedgewick® Rafter counting cell. Identi-
fication of copepod nauplii was conducted
according to Dr. K. Stuck of University of
Southern Mississippi and Dr. J. Reid of
Department of Systematic Biology, Museum of
Natural History, Smithsonian Institution.

Phytoplankton sampling was conducted in
the afternoon (1500—1600 h) at the beginning,
middle and end of the study. Five liters of pond
water were sieved through 5-mL Nitex®
plankton net and concentrated into 50 mL and
preserved in Lugol’s solution (Sournia, 1978;
Tomas, 1997). Phytoplankton was counted
using a Reichert® Improved Neubauer
Haemacytometer with the plankton density
expressed in cells/mL from an average of two
counts (Sournia, 1978; Hoff & Snell, 1993).

When copepod nauplii were found to be
more than 90% of the total zooplankton
organisms in the pond, they were collected
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following the trapping method described by
Lan (2001). The trap consisted of three
cylindrical containers (140 L each) connected
in series by 5.08-cm pipe. A 5.08 cm diameter
PVC water supply pipe was placed above the
containers and had two water outlets (1.9 cm
PVC T’s) extending to each container. A set of
40-mm and 100-mm nylon filter bags with
drawstrings around the mouth, 80-cm long and
17.5-cm diameter, were tied to each water
outlet. The 100-mm mesh bag was placed inside
the 40-mm mesh bag. A sump pump (1/3 HP-
115 volt) with a mean pumping rate of 133.81 ±
8.5 L/min. was connected to water supply pipe
and suspended in the water column of the
pond. Water passed through the 100 mm bag
then the 40 mm bag into the surrounding
container, where the water level was
maintained at 17 cm below the top of the
containers, then back to the pond. Filtered
water flowed back to the pond through the
containers. The discharge was approximately
2 m away from the pump intake.

Copepod nauplii A. panamensis used in the
acclimation trials were obtained only from the
pond receiving mixed organic fertilizers.
Acclimation was accomplished by dilution of
the initial holding water (8—12 ppt) with 32 ppt
seawater to achieve an end point of 32 ppt.
Copepod nauplii were siphoned from the 20-L
transport bucket and equal volumes added to
each 20 L acclimator bucket. The dilution water
flow rate was determined by calculating the
salinity increase divided by acclimation period
(6, 12, 24 hours). Salinity was measured using
an Atago refractometer (± 1 ppt). Water flow
and salinity was monitored hourly to maintain
the salinity increase evenly. Temperature and
dissolved oxygen was measuring hourly using
YSI dissolved oxygen meter (Model #8510).
Aeration was adjusted to maintain the D.O. level
above 4 mg/L. All acclimation trials were
conducted in the laboratory and acclimated to
the same temperature of 23°C. Copepod nauplii
were not fed during the experiments.

Prior to acclimation, at least 50 million of
the collected copepod nauplii (approximately
5.0 g wet weight) were sieved through 21µm
Nitex® plankton net, rinsed with approximately
one liter of distilled water, placed in screwed-
cap glass jars and stored at –20°C (Kates, 1986;
Christie, 1987). After acclimation, a minimum
sample of 5.0 g (wet weight) of copepod nauplii
were collected and frozen following the same
procedures. All samples were held for lipid
extraction and fatty acid analysis.

Lipid Extraction and Fatty Acid Analysis
Lipid extraction was conducted at the Fish

Nutrition Laboratory of Department of
Fisheries and Allied Aquacultures, Auburn
University, Alabama. The extraction of lipid
from copepod nauplii and oils was carried out
with a mixture of chloroform and methanol (2:1,
v/v) containing 0.01% butylhydroxytoluene
(BHT) following the method of Folch et al.
(1957). Total lipids were separated to polar
and neutral lipids with Whatman solid phase
extraction silica cartridge as described by
Juaneda & Rocquelin (1985). The lipids were
saponificated with potassium hydrate. The
relative fatty acid methyl esters (FAME) were
prepared by transesterification with
borontrifluoride in methanol. FAME were
analyzed on a gas liquid chromatograph (GC-
17A; Shimadzu, Kyoto, Japan) equipped with a
hydrogen flame ionization detector (FID) and
an Supelco  Omegawax® fused silica capillary
column (30 m x 0.53 id x 0.50 mm film
thickness; Supelco Inc., Be llefonte,
Pennsylvania). The column temperature was
initially held at 140°C for 5 min, followed by
an increase at a rate of 3 C/min to a final
temperature of 260°C and held for two minutes
at the end of each run. The carrier gas was
helium and the pressure was 100 kPa.
Individual FAME was quantified with an
integrator (Shimadzu Class VPTM Data System
Version 4.3, Shimadzu Scientific Instrument).
Flow rates were: helium at 3.4 mL/min,
hydrogen 7.4 mL/min and air 2.8 mL/min. The
air was passed through Supelcarb® HC
(Supelco Inc., Bellefonte, Pennsylvania) and a
carrier gas drying tube. Total analysis time in
each run was 42 minutes. Retention times were
determined relative to that of FAME standards
of Supelco® PUFA-3 (Catalog No. 47085-U) and
Supelco® 37 Component FAME Mix (Catalog
No. 47885-U). The flame ionization detector
(FID) and injector were set at 270°C and 260°C,
respectively with sample size of 1.0 mL in 10:1
split and splitless mode. The pressure of gas
carrier was set at 26 kPa to 30 kPa at 0.1 kPa/
minute and also held for two minutes at the
end of each run. Fatty acid values were
expressed as area percent of the total
identified fatty acids. Each sample was
analyzed in duplicates.

Statistical Analyses
Values are presented in mean ± standard

error. If required, some data were transformed
into square root for count data and arcsin
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square root for proportions before analyses.
Data were analyzed using t-test and one-way
analysis of variance (ANOVA) model procedure
of SAS® Version 6.12 for Windows® (Statistical
Analysis System, 1996). When significant
differences among treatment means were
detected, a least significant difference (LSD)
multiple range test was applied (Sokal & Rohlf,
1981). The differences were considered to be
significant at probability level of P d” 0.05.

RESULTS
Copepod Nauplii

Results of non polar and polar fraction of
HUFA acid profiles (ARA, EPA, and DHA), total
lipid content and individual weight of post
harvest copepod nauplii A. panamensis
trapped from several fertilization pond regimes
are shown in Table 1 and 2, respectively. Total
lipid content (g/100 g dry weight) of copepod

Table 1. Non-polar fatty acid profile, total 3 and 6, 3/6 and DHA/EPA ratios, total
unsaturated and saturated fatty acid (% total fatty acid) and its ratio, non-polar
lipid content (g/100g dry weight) and % non-polar lipid of total lipids, total lipid
content (g/100g dry weight), and individual copepod naupliar weight (µg) of
post harvest copepod nauplii A. panamensis trapped from rice bran, wheat bran
and mixed meals fertilization of brackish water ponds (mean ± standard error).
Only parameters with significant differences (P<0.05) are noted

1 Sum included 18:3(n-3), 18:4(n-3), 20:4(n-3), 20:5(n-3), 22:5(n-3), and 22:6(n-3)
2 Sum includes 18:2(n-6), and 20:4(n-6)

Fatt y acid Rice bran Wheat  bran Mixed meals

14:00 17.5 ± 0.4 11.8 ± 0.7 13.0 ± 1.6
16:00 12.8 ± 0.5 13.9 ± 0.5 16.2 ± 0.6
16:1(n-7)   1.5 ± 0.1   0.9 ± 0.0   0.8 ± 0.1
16:2(n-4)   0.6 ± 0.0   0.7 ± 0.1   0.4 ± 0.0
16:3(n-4)   0.3 ± 0.1   0.3 ± 0.0   0.2 ± 0.2
18:00   4.0 ± 0.0   4.9 ± 0.4   5.2 ± 0.1
18:1(n-9)   0.4 ± 0.0   0.5 ± 0.1   0.4 ± 0.1
18:1(n-7)   1.4 ± 0.2   1.2 ± 0.1   1.5 ± 0.2
18:2(n-6)   0.3 ± 0.0   0.7 ± 0.1   0.7 ± 0.1
18:3(n-4)   0.2 ± 0.0   0.3 ± 0.0   0.2 ± 0.0
18:3(n-3)   0.2 ± 0.0   0.1 ± 0.0   0.3 ± 0.0
18:4(n-3)  0.3 ± 0.0   0.5 ± 0.0   0.6 ± 0.0
20:1(n-9)   0.5 ± 0.1   0.3 ± 0.1   0.6 ± 0.0
20:4(n-6)   1.3 ± 0.0   1.3 ± 0.2   1.4 ± 0.0
20:4(n-3)   0.4 ± 0.0   0.4 ± 0.1   0.2 ± 0.0
20:5(n-3) 14.0 ± 0.1 15.6 ± 3.2 14.8 ± 0.4
22:5(n-3)   0.1 ± 0.0   0.3 ± 0.1   0.2 ± 0.1
22:6(n-3) 27.4 ± 1.6 27.0 ± 1.8 28.1 ± 2.3

42.3 ± 1.6 43.7 ± 4.9 44.1 ± 1.8
  1.5 ± 0.1   1.9 ± 0.3   2.1 ± 0.1
28.2 ± 0.1a  23.1 ± 0.5b  21.5 ± 0.4b

DHA/EPA   2.0 ± 0.1   1.8 ± 0.2   1.9 ± 0.2
83.0 ± 0.8 80.6 ± 3.6 84.5 ± 3.8

Non-polar lipid    7.76 ± 0.27a    6.35 ± 0.34b     6.90 ± 0.52ab

% non-polar lipid 91.8 ± 1.0 74.5 ± 1.8 84.6 ± 6.0
Total lipid   7.76 ± 0.27   6.35 ± 0.34   6.90 ± 0.52
Naupliar weight   0.16 ± 0.01   0.13 ± 0.02   0.13 ± 0.01

31

62

6

 identified fatty acids

Indonesian Aquaculture Journal Vol.2 No.2, 2007

78



nauplii ranged from 6.35% in a wheat bran-
fertilized pond to 7.76% in rice bran fertilized
pond. There was no difference in mean lipid
content of copepod nauplii trapped from rice
bran, wheat bran and mixed meals fertilized
ponds (P= 0.182). Means of non-polar lipid
content of copepod nauplii ranged from 4.72%
(74.5% ± 1.8% of total lipid content in wheat
bran fertilized ponds) to 7.12% (91.8% ± 1.0% of
total lipid content in rice bran fertilized ponds).
Mean non-polar lipid content of copepod
nauplii trapped from wheat bran fertilized
ponds was lower than those from other
fertilization regimes (P= 0.003).

Ranges of mean polar lipid content of
copepod nauplii trapped from various
fertilization regimes were 0.51 to 0.82 g/100g
dry wt, with percentages of the total lipid 6.5%
to 21.3%. There were significant differences
in ARA, EPA, and DHA/EPA ratio for copepods
collected from the different fertilization
regimes. Copepod nauplii from wheat bran
ponds had significant lower mean content of
ARA than those of other regimes (P= 0.022)
while mean content of EPA in copepod nauplii
trapped from the rice bran regime had a
significant lower level than those of other
regimes (P= 0.004). There was no significant

Table 2. Polar fatty acid profile, total 3 and 6, 3/6 and DHA/EPA ratios, total
unsaturated and saturated fatty acid (% total fatty acid) and its ratio and
polar lipid content (g/100g dry weight) and % polar lipid of total lipids of
post harvest copepod nauplii A. panamensis trapped from rice bran, wheat
bran and mixed meals fertilization of brackish water ponds (mean ± standard
error). Only parameters with significant differences (P<0.05) are noted

1 Sum included 18:3(n-3), 18:4(n-3), 20:4(n-3), 20:5(n-3), 22:5(n-3), and 22:6(n-3)
2 Sum includes 18:2(n-6), and 20:4(n-6)

Fat t y acid Rice bran Wheat  bran Mixed meals

14:00 12.3 ± 1.1 12.7 ± 0.7 11.9 ± 0.7
16:00 25.5 ± 0.6 16.7 ± 0.8 18.6 ± 0.4
16:1(n-7)   1.5 ± 0.1   1.2 ± 0.2   0.9 ± 0.0
16:2(n-4)   1.4 ± 0.3   1.3 ± 0.0   0.5 ± 0.0
16:3(n-4)   0.8 ± 0.2   1.6 ± 0.0   0.4 ± 0.1
18:00   5.9 ± 0.4   7.9 ± 0.5   6.6 ± 0.8
18:1(n-9)   1.4 ± 0.1   1.2 ± 0.0   1.3 ± 0.0
18:1(n-7)   1.2 ± 0.1   1.2 ± 0.2   1.1 ± 0.2
18:2(n-6)   1.1 ± 0.0   2.1 ± 0.0   2.2 ± 0.2
18:3(n-4)   0.4 ± 0.1   0.4 ± 0.1   0.4 ± 0.0
18:3(n-3)   0.1 ± 0.0   0.1 ± 0.0   1.1 ± 0.2
18:4(n-3)   0.1 ± 0.0   0.2 ± 0.0   0.3 ± 0.0
20:1(n-9)   0.6 ± 0.1   0.7 ± 0.1   0.9 ± 0.1
20:4(n-6)   1.5 ± 0.3a   1.0 ± 0.1b   1.4 ± 0.0a

20:4(n-3)   0.3 ± 0.0   0.4 ± 0.0   0.3 ± 0.1
20:5(n-3)   9.8 ± 0.4a 12.6 ± 0.8b 13.8 ± 0.8b

22:5(n-3)   0.2 ± 0.1   0.1 ± 0.0   0.4 ± 0.1
22:6(n-3) 23.0 ± 2.2 22.9 ± 0.3 22.4 ± 0.4

33.4 ± 2.6 36.2 ± 1.0 38.1 ± 1.4
   2.5 ± 0.3   3.1 ± 0.1   3.6 ± 0.2
 13.3 ± 0.7 11.8 ± 0.6  10.8 ± 1.0b

DHA/EPA     2.4 ± 0.1a     1.8 ± 0.1b    1.6 ± 0.1b

 86.7 ± 3.5 83.0 ± 2.9 84.1 ± 1.7
Polar lipid    0.51 ± 0.09    0.36 ± 0.19   0.82 ± 0.48
% polar lipid   6.5 ± 1.0 21.3 ± 1.8  11.4 ± 6.0

31

62

6

 identified fatty acids

Fatty acid profiles of cyclopoid copepod nauplii ....  (Gede S. Sumiarsa)

79



different in mean individual copepod nauplii
weight (P= 0.294).

Pre- and Post-acclimation Fatty Acid
Profiles

HUFA profiles, survival rate and individual
dry weight of post harvest and six-hour post

acclimation are presented in Table 3 and 4.
Acclimation from an average initial salinity of
19.7 ± 0.2 ppt up to full seawater salinity of
32.0 ppt was conducted over six hours at a
copepod nauplii density of 200 individuals/L.
Mean total lipid content was significantly lower
(P= 0.029) after acclimation decreasing from

Table 3. Non-polar fatty acid profile, total 3 and 6, 3/6 and DHA/EPA ratios, total
unsaturated and saturated fatty acid (% total fatty acid) and its ratio, non-polar
lipid content (% dry weight and % non-polar lipid), total lipid content (% dry
weight), and individual copepod naupliar weight (µg), survival rate (%), and
change values (%) of post harvest and six-hour post acclimation of copepod
nauplii A. panamensis trapped from mixed meals fertilized brackish water ponds
(mean ± standard error). Values followed by the same letter in the same row are
not significantly different (P>0.05)

1 Sum included 18:3(n-3), 18:4(n-3), 20:4(n-3), 20:5(n-3), 22:5(n-3), and 22:6(n-3)
2 Sum includes 18:2(n-6), and 20:4(n-6)

Fatt y acid Post  
harvest

Six-hour post  
acclimat ion

Change 
(%)

14:00 13.0 ± 1.6 14.1 ± 1.2 -8.5
16:00 16.2 ± 0.6 19.9 ± 0.8 -22.8
16:1(n-7)   0.8 ± 0.1   2.0 ± 0.5 150
16:2(n-4)   0.4 ± 0.0   0.5 ± 0.4 25
16:3(n-4)   0.2 ± 0.2   0.4 ± 0.1 20
18:00   5.2 ± 0.1   6.0 ± 0.3 15.4
18:1(n-9)   0.4 ± 0.1   0.5 ± 0.2 25
18:1(n-7)   1.5 ± 0.2   3.2 ± 0.4 113.3
18:2(n-6)   0.7 ± 0.1   0.8 ± 0.1 14
18:3(n-4)   0.2 ± 0.0   0.2 ± 0.0 0
18:3(n-3)   0.3 ± 0.0   0.2 ± 0.1 -33.3
18:4(n-3)   0.6 ± 0.0   0.6 ± 0.1 0
20:1(n-9)   0.6 ± 0.0   0.8 ± 0.0 33.3
20:4(n-6)   1.4 ± 0.0   1.6 ± 0.1 14.3
20:4(n-3)   0.2 ± 0.0   0.2 ± 0.2 0
20:5(n-3) 14.8 ± 0.4a   8.5 ± 0.6b -57.4
22:5(n-3)   0.2 ± 0.1   0.2 ± 0.1 0
22:6(n-3) 28.1 ± 2.3 20.5 ± 2.1 -27

44.1 ± 1.8a 30.2 ± 1.4b -31.5
   2.1 ± 0.1   2.4 ± 0.3 14.3
21.5 ± 0.4a 12.6 ± 0.5b -41.4

DHA/EPA   1.9 ± 0.2   2.4 ± 0.9 26.3
84.5 ± 3.8 80.1 ± 3.2 -5.2

Non-polar lipid   5.83 ± 0.05a   3.15 ± 0.06b -46
% non-polar lipid 84.6 ± 6.0a 82.1 ± 4.4a -3
Total lipid   6.90 ± 0.52a   3.85 ± 0.26b -44.2
Naupliar weight   0.13 ± 0.01a    0.08 ± 0.01b -38.5
Surv ival rate 90.4 ± 3.4
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6.90 ± 0.52 to 3.85% ± 0.26% after six hours, a
44.2% decrease. Non-polar lipid content was
significantly lower after acclimation (P<0.001)
with a 46.9% decrease. There was a trend
towards a small increase in relative abundance
for many of the fatty acids. The fatty acid
16:1(n-7) increased from 0.8% to 2.0% and 18:1
(n-7) increased from 1.5% to 3.2%. In contrast,
the relative abundance of DHA decreased
27.45 and EPA was statistically less, a 57.4%
decrease. The degree of decrease in EPA being

greater than that for DHA resulted in the DHA/
EPA ratio increasing from 1.9 ± 0.2 to 2.4 ± 0.4.

In the polar fraction there were minor
increases or decreases in the relative
abundance for the majority of the fatty acids.
Similar to the non-polar fraction, 18:1 (n-7)
increased, in this case from 1.1% to 2.1%. The
change in DHA and EPA showed the opposite
trend to that seen in the non-polar fraction. In
the polar fraction DHA decreased significantly

Table 4. Polar fatty acid, total 3 and 6, 3/6 and DHA/EPA ratios, total
unsaturated and saturated fatty acid (% total fatty acid) and its ratio and
polar lipid content (% dry weight and % polar, and change values (%) of post
harvest and six-hour post acclimation of copepod nauplii A. panamensis
trapped from mixed meals fertilization in brackish water ponds (mean ±
standard error). Values followed by the same letter in the same row are not
significantly different (P>0.05)

1 Sum included 18:3(n-3), 18:4(n-3), 20:4(n-3), 20:5(n-3), 22:5(n-3), and 22:6(n-3)
2 Sum includes 18:2(n-6), and 20:4(n-6)

Fat ty acid Post  
harvest

Six-hour post  
acclimat ion

Change 
(%)

14:00 11.9 ± 0.7 13.3 ± 0.7 11.8
16:00 18.6 ± 0.4 20.3 ± 0.8 9.1
16:1(n-7)   0.9 ± 0.0   0.8 ± 0.2 -11.1
16:2(n-4)   0.5 ± 0.0   0.6 ± 0.1 20
16:3(n-4)   0.4 ± 0.1   0.4 ± 0.0 0
18:00   6.6 ± 0.8   7.5 ± 0.9 13.6
18:1(n-9)   1.3 ± 0.0   1.2 ± 0.1 -7.7
18:1(n-7)   1.1 ± 0.2   2.1 ± 0.3 90.1
18:2(n-6)   2.2 ± 0.2   2.3 ± 0.2 4.5
18:3(n-4)   0.4 ± 0.0   0.3 ± 0.1 -25
18:3(n-3)   1.1 ± 0.2   0.9 ± 0.1 -18.2
18:4(n-3)   0.3 ± 0.0   0.1 ± 0.1 -66.7
20:1(n-9)   0.9 ± 0.1   0.7 ± 0.1 -22.2
20:4(n-6)   1.4 ± 0.0   1.2 ± 0.0 -14.3
20:4(n-3)   0.3 ± 0.1   0.1 ± 0.1 -66.7
20:5(n-3) 13.8 ± 0.8 12.0 ± 0.6 -13
22:5(n-3)   0.4 ± 0.1   0.3 ± 0.1 -25
22:6(n-3) 22.4 ± 0.4a 12.5 ± 0.7b -36.1

38.1 ± 1.4a 27.8 ± 2.3 -27
   3.6 ± 0.2a   3.4 ± 0.4a -5.6
10.8 ± 1.0a   8.2 ± 0.4a -24.1

DHA/EPA   1.6 ± 0.1a   1.2 ± 0.0b -25
84.1 ± 1.7a 78.5 ± 2.1b -18.8

Polar lipid   0.82 ± 0.48   0.62 ± 0.21 -24.4
% polar lipid  11.4 ± 6.0 16.1 ± 4.4 41.2

31

62

6

 identified fatty acids
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from 22.4% ± 0.4% to 14.3% ± 0.9% while EPA
changed from 13.8% ± 0.8% to 12.0% ± 0.6% and
as a result the DHA/EPA ratio was decreased
significantly from 1.6 ± 0.1 to 1.2 ± 0.0. Mean
survival rate during acclimation was 90.4% ±
3.4%.

DISCUSSION

Fatty Acid Profiles of Copepod Nauplii
from Ponds

Copepod nauplii are nutritionally more
suitable than rotifer (Brachionus plicatilis), brine
shrimp (Artemia sp.) (Stottrup et al., 1998) and
oyster trochophores (Lim, 1991; Doi &
Singhagraiwan, 1993; Su et al., 1997) as a feed
for larval marine fish. Copepod nauplii have
high contents of PUFA (polyunsaturated fatty
acids) and other fatty acids needed to meet
the nutritional requirements of a fish’s early
ontogeny (Witt et al., 1984). Moreover, the small
size of copepod nauplii favors its acceptance
(Last, 1978) as often other commonly produced
food organisms may be too large for many
marine fish larvae.

Nauplii can be obtained in large quantities
from prepared production ponds (Lam, 2001;
Sumiarsa, 2003). Differences in pond
preparation procedures used in this study had
little effect on the nutrient profile of nauplii,
resulting in a high quality live food.

The pond produced copepod nauplii of A.
panamensis in this study (Tables 5) are slightly
higher in lipid content than those of copepod
nauplii in South China Sea (Lokman, 1994;
Shansuddin et al., 1997) but much lower than
those of adult calanoid copepod Calanus
hyperboreas found in Arctic Ocean (Lee, 1974)
and copepodite stage Calanus finmarchicus,
Pseudocalanus sp. and Temora longicornis in
nutrient-enriched seawater enclosure (Fraser
et al., 1989), and similar to seasonal variations
of subarctic adult copepod Acartia longiremis
and Pseudocalanus acuspes (Norrbin et al.,
1990).

As with other animals, zooplankton
contains both polar lipids (largely
phospholipids present in cell membranes) and
non-polar (neutral) lipids that are fundamentally
metabolic energy reserves (Sargent et al.,
1989). The neutral lipid in zooplankton can be
present in much greater amounts than polar
lipids and can account for up to one-half or

more of the animals’ dry body weigh. Fraser et
al. (1989) found neutral lipids to be 55.7% ±
1.4% to 79.0% ± 1.7% of total lipid in late
copepodites and adult copepods C.
finmarchicus, Pseudocalanus sp. and T.
longicornis. Norrbin et al. (1990) found neutral
lipids of two adult calanoid copepod species
to be 55% to 72% of total lipid. In the laboratory,
Stottrup et al. (1986) found the proportion of
polar lipids was comparable to that of neutral
lipids based upon different provided diets and
proportion of polar lipid content of naupliar and
adult calanoid copepod A. tonsa were 40%—
59% of the total lipid content (Table 5). Early
stage nauplii often have high lipid levels but
drops as the nauplii continue to develop
(Sargent & Henderson, 1986). Nauplii of
A.panamensis from fertilized ponds had an
average of 83,6% of the total lipids as neutral
lipids.

DHA/EPA ratio in neutral lipids ranged from
1.7 ± 0.4—2.0 ± 0.1 with no significant
differences in three fertilization regimes. DHA
was 27.5% ± 0.56% of the neutral lipids and EPA
14.8% ± 0.8%. Lokman (1994) and Shansudin et
al. (1997) reported DHA/EPA ratio of natural
zooplankton (> 60% was Oithona sp.) of
between 1.0 and 2.3 with mean contents of
DHA and EPA in dry and wet seasons of 6.8% to
28.7%, and 3.2% to 19.7% of total fatty acids,
respectively. Fraser et al. (1989) reported DHA/
EPA ratio of C. finmarchicus, Pseudocalanus sp.
and T. longicornis in natural waters of between
0.7 and 2.4 in non-polar fatty acids, while
Norrbin et al. (1990) found the ratio in adult
calanoid species Pseudocalanus acuspes and
Acartia longiremis in natural waters to be 0.2
and 0.7, respectively.

Ranges of DHA/EPA ratios of polar lipid class
in copepod nauplii in this study were 1.6 ± 0.1
to 2.4 ± 0.1 with the ratio in rice bran regime
being the highest level compared to the other
regimes (P= 0.035). Fraser et al. (1989) and
Norrbin et al. (1990) reported ratios in polar
lipid fatty acids of adult copepods A.
longiremis, C. finmarchicus, Pseudocalanus sp.,
P. acuspes and T. longicornis to be 1.3—1.4
and 0.8—1.2, respectively. In general, Sargent
et al. (1999) suggested that the optimal DHA/
EPA ratio in lipids for marine finfish larval diets
was about 2.0. Copepod nauplii from the
various fertilization regimes had a DHA/EPA
ratio for both lipid classes of approximately
2.0.
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Fatty Acid Profiles of Acclimated
Copepod Nauplii

Species in the genera Apocyclops have a
wide range of salinity tolerance. Dexter (1993)
reported that the cyclopoid copepod
Apocyclops dengizicus can thrive in natural
waters with salinities of 0.5—68 ppt. Cheng et
al. (2001) demonstrated that optimal salinity
for another cyclopoid copepod A. royi was
between 10 and 20 ppt in laboratory. Salinity
in the fertilized ponds averaged 19.0 ± 0.2 ppt,
respectively.

Fertilized brackish water ponds are a good
source of nauplii with densities of >1,000/L
were in common (Sumiarsa, 2003) but such
nauplii must be acclimated to full strength
salinity if they are to be used as a live food for
many marine fish larvae. Lan (2001) found that
without acclimation, nauplii mortality was often
100% within 6 h when directly transferred to
sea water, but when acclimated from 8 to 32
ppt over a 6 h period the survival was 69.6%. In
this study survival averaged 90.4% ± 3.4% after
a 6 h acclimation from 19.7 to 32 ppt. Holding
nauplii in a crowded environment with little
opportunity to feed while they adjust to salinity
changes can impact nutrient reserves as was
evident in this study. Mean total lipid content
was reduced 44.2 %, non-polar lipid was
reduced 46.9% and polar lipid was reduced
24.4%.

Copepod nauplii were not fed during
acclimation and this may have contributed to
the reduced fatty acid levels (Bourdier &
Amblard, 1989). Rippingale & Crossland (1993)
found that differences in salinity had little
effect on survival of copepods provided with
excess food, but for animals that were starved,
significant differences in survival did occur
with another estuarine calanoid copepod
Eurytemora affinis. Gonzales & Bradley (1994)
suggested that osmoregulation in these
copepods require energy. Evjemo et al. (2003)
found that when T. longicornis and Eurytemora
sp. were starved total lipids declined 18and
12%/d respectively and the fatty acid content
declined 24 and 16%/d.

The decrease in copepod nauplii neutral
lipids after acclimation was significantly more
than that of the polar lipid (P= 0.043). It is
suggested that energy reserves from
triglycerides and wax ester (neutral lipids) were
used in much greater proportion during unfed
and crowded conditions of acclimation.

Bourdier & Amblard (1989) reported that almost
all the neutral lipid in the calanoid copepod
Acanthodiaptomus denticornis was used up
after 20 days of starvation while the polar lipids
were reduced only about 5%—16%. Torres et
al. (2002) acclimated four decapods
crustacean larvae (Cancer pagurus, Homarus
gammarus, Carcinus maenas, and
Chasmagnathus granulate) from 32 ppt to 25,
20, and 15 ppt, and they found that lipid content
decreased 5%—55% after short (16 hours) and
long (>16 hours) exposures. Effects of salinity
on copepod nauplii biomass may have occurred
as metabolic adjustments induced by osmotic
stress or due to physiological strategies to face
such stress (Kinne, 1971). Osmotic stress due
to disturbance of the water and mineral balance
may cause critical variation in the metabolic
rate or disharmonizing effects on mechanisms
of organism integration. Under osmotic stress,
metabolism increases and the energy
necessary for this process must have
originated primarily from catabolism of neutral
lipids explaining negative growth (lost of dry
weight) and reduced lipid content after
acclimation.

Evjemo et al. (2003) found that when T.
longicornis and Eurytemora sp. were starved
96 h the absolute DHA content (mg/g) declined
14 and 10% respectively. However, they found
that the DHA/EPA ratio increased. With A.
panamensis the DHA/EPA ratio in the neutral
fraction had increased 26.3% after acclimation
but in the polar fraction the ratio declined 25%.
DHA in the neutral fraction declined 27.0% and
36.1% in the polar fraction after acclimation.
The relative abundance of EPA was reduced
57% in the neutral fraction but only 13% in the
polar fraction. These results suggest a
selective utilization of EPA in the neutral
fraction.

CONCLUSIONS
Mean total lipid contents and fatty acid

profiles of copepod nauplii A. panamensis
trapped from inorganic fertilizer combined
either with alfalfa meal, rice bran or wheat bran,
and combinations of these organic fertilizers
were similar. DHA/EPA ratios of both non-polar
and polar lipids were between 1.6 and 2.4, and
non-polar lipid fraction was significantly larger
than that of the polar lipid.

Acclimation of copepod nauplii from
brackish to full-strength seawater salinity was
the major bottleneck in their propagation in
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brackish water ponds for marine finfish
hatchery. Not only did it reduce mean total
lipid content to almost half of its origin level
but also generally reduced other fatty acid
profiles significantly. In addition, acclimation
delayed delivery of copepod nauplii from
ponds to the hatchery for at least six hours
and reduced the total supply of live copepod
nauplii by ten percent or more.
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