Lactococcus garvieae: CHARACTERIZATION AND ABILITY TO INHIBIT THE GROWTH OF AQUACULTURE PATHOGENIC BACTERIA

Mira Mawardi, Agustin Indrawati, Angela Mariana Lusiastuti, I Wayan Teguh Wibawan

Abstract


Lactococcus garvieae is a gram-positive ovoid cocci bacterium formerly classified as a member of the Lactococcus genus. This study aims to isolate L. garvieae from catfish rearing pond and characterize it as a potential probiotic candidate. L. garvieae was identified and characterized through phenotypic and genotypic observation, genomic % G~C content analysis, cell surface hydrophobicity assays, acidification test, in vitro antagonism, and a profile of antimicrobial activities. The MT597595.1 accession number corresponds to L. garvieae, as determined by a molecular identification test. Biochemical characterization was performed using API 50 CH kit. The genomics %G~C content of L. garvieae was 51.8. Findings from acidification ability tests, in vitro antagonism tests, and the ability of bacteria to grow in broth medium at pH 4 reveal that L. garvieae can inhibit the growth of Aeromonas hydrophila, Streptococcus agalactiae, Streptococcus iniae, and Edwardsiella ictaluri. However, it does not suppress the growth of L. garvieae  Edwardsiella tarda. Remarkably, L. garvieae has the ability to reduce the pH of neutral broth medium turning it acidic. Furthermore, L. garvieae’s hydrophobic cell surface exhibited an adhesive, hydrophobic, and protein surface cell content with a compact growth pattern consistent with postive SAT and MATH assay. Antimicrobial activity tests, encompassing 11 antibiotics, disclosed resistance to  Nalidixic acid while displaying intermediate sensitivity to Streptomycin and Trimethoprim. In conclusion, L. garvieae demonstrates an inhibitory effect on the growth of pathogenic bacteria, underlining its potential as a probiotic candidate.

Keywords


Aeromonas hydrophila, Edwardsiella ictaluri, Edwardsiella tarda, Lactococcus garvieae, Streptococcus agalactiae, Streptococcus iniae

Full Text:

PDF

References


Abass N, Simora RMC, Wang J, Li S, Xing D, Coogan M, Johnson A, Creamer D, Wang X, Dunham RA. (2022). Fish & Shellfish Immunology;126;311-317. https://doi.org/10.1016/j.fsi.2022.05.050

Abdelfatah, E. N., & Mahboub, H. H. H. (2018) Studies on the effect of Lactococcus garvieae of dairy origin on both cheese and Nile tilapia (O. niloticus). International Journal of Veterinary Science and Medicine (6);201-207. https://doi.org/10.1016/j.ijvsm.2018.11.002.

Al-Harbi, A. H. (2011) Molecular characterization of Streptococcus iniae isolated from hybrid tilapia (Oreochromis niloticus × Oreochromis aureus). Aquaculture.312(1-4);15-18. http://dx.doi.org/10.1016/j.aquaculture.2010.12.014.

Basri L, Nor RM, Salleh A, Md. Yasin IS, Saad MZ, Abd. Rahaman NY, Barkham T, Amal MNA (2020) Co-infections of tilapia lake virus, Aeromonas hydrophila and Streptococcus agalactiae in farmed red hybrid tilapia. Animals 10(11):2141. https://doi.org/10.3390/ani10112141

Borrero J, Brede DA, Skaugen M, Diep DB, Herranz C, Nes IF, Cintas LM, Herna´ndez PE (2011) Characterization of garvicin ML, a novel circular bacteriocin produced by Lactococcus garvieae DCC43, isolated from mallard ducks (Anas platyrhynchos). Appl Environ Microbiol (77):369–73. doi: 10.1128/AEM.01173-10.

Chi, H., & Holo, H. (2018) Synergistic antimicrobial activity between the broad spectrum bacteriocin garvicin KS and Nisin, farnesol and polymyxin B against Gram-positive and Gram-negative bacteria. Current Microbiology.75;272-277. DOI: 10.1007/s00284-017-1375-y

CLSI-Clinical and Laboratory Standards Institute (2018) M100 performance standards for antimicrobial susceptibility testing. Edisi 28. Wayne. USA.p;30-37

Delphino, M. K. V. C., Barone, R. S. C., Leal, C. A. G., Figueiredo, H. C. P., Gardner, I. A., & Gonçalves, V. S. P. (2019) Economic appraisal of vaccination against Streptococcus agalactiae in Nile tilapia farms in Brazil. Preventive Veterinary Medicine.162(1);131-135. DOI: 10.1016/j.prevetmed.2018.12.003

Dubey, S., Diep, D. B., Evensen, Ø., & Munang’andu, H. M. (2022) Garvicin KS, a broad-spectrum bacteriocin protects zebrafish larvae against Lactococcus garvieae infection. Int J Mol Sci. 2022 Mar; 23(5): 2833. doi: 10.3390/ijms23052833.

FAO.(2020). The state of world fisheries and aquaculture 2020. Sustainability in Action; FAO: Rome, Italy.

Ferrario, C., Ricci, G., Milani, C., Lugli, G. A., Ventura, M., Eraclio, G., Borgo, F., & Fortina, M.G. (2013) Lactococcus garvieae: Where is it from? a first approach to explore the evolutionary history of this emerging pathogen. PLoS ONE 8(12): e84796. https://doi.org/10.1371/journal.pone.0084796

Flores-Kossack, C., Montero, R., Köllner, B., & Maisey. (2020) Chilean aquaculture and the new challenges: pathogens, immune response, vaccination and fish diversification. Fish Shellfish Immunol. 2020;98:52-67.DOI: 10.1016/j.fsi.2019.12.093

Garg, P., & Sharma, S. (2020) Identification of CpG islands in DNA sequences using short time fourier transform. Interdisciplinary Sciences: Computational Life Sciences.12;355-367 https://doi.org/10.1007/s12539-020-00370-y

Jin, W., Jiang, L., Hu, S., & Aiyi, Z. (2023) Metabolite features of serum and intestinal microbiota response of largemouth bass (Micropterus salmoides) after Aeromonas hydrophila challenge. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology;263. https://doi.org/10.1016/j.cbpc.2022.109496

Lee, K., Kim, D-W., Lee, D-H., Kim, Y-S., Bu, J-H., Cha, J-C., Thawng, C. N., ... Cha, C-J. (2020) Mobile resistome of human gut and pathogen drives anthropogenic bloom of antibiotic resistance, Microbiome;8;2https://doi.org/10.1186/s40168-019-0774-7

Maldonado-Barragán, A., Alegría-Carrasco, E., Blanco, M. D. M., Vela, A. S., Fernández-Garayzábal, J. F., Rodríguez, J. M., & Gibello, M. (2022) Garvicins AG1 and AG2: Two Novel Class IId Bacteriocins of Lactococcus garvieae Lg-Granada. Int J Mol Sci.2022,23(9):4685.DOI: 10.3390/ijms23094685

Maldonado-Barragán, A., Cárdenas, N., Maránez, B., Ruiz-Barba, L., Fernández-Garayzábal, F., Rodráquez, J. M., & Gibello, A. (2013) Garvicins A, a Novel class IId bacteriocin from Lactococcus garvieae that inhibits septum formation in L. garvieae strains. Appl Environ Microbiol 2013;79:4336–46. https://doi.org/10.1128/AEM.00830-13

Mattos-Guaraldi, A. L., Formiga, L. C., & Andrade, A. F. (1999) Cell surface hydrophobicity of sucrose fermenting and nonfermenting Corynebacterium diphtheriae strains evaluated by different methods. Current Microbiology 38(1),37-42. doi:10.1007/pl00006769. PMID: 9841780.

Mawardi. M., Jelani., Zainun, Z., Mundayana, Y., Chilora, B. S., Hardi, E. H. (2018) Identification and characterization of Edwardsiella ictaluri from diseased Pangasius pangasius, cultured in Cirata Lake, Indonesia. Biodiversitas.19(3);816-822. DOI: 10.13057/biodiv/d190309

Mencía-Ares O, Cabrera-Rubio R, Cobo-Díaz JF, Álvarez-Ordóñez A, Gómez-García M, Puente H, Cotter PD, Crispie F, Carvajal A , Rubio P, Argüello H (2020) Antimicrobial use and production system shape the fecal, environmental, and slurry resistomes of pig farms. Microbiome,8;164. https://doi.org/10.1186/s40168-020-00941-7

Munang’andu, H. M. (2018) Intracellular Bacterial Infections: A challenge for developing cellular mediated immunity vaccines for farmed fish. Microorganisms,6, 33. DOI:10.3390/microorganisms6020033

Nayak, A., Karunasagar, I., Chakraborty, A., & Maiti, B. (2021). Potential application of bacteriocins for sustainable aquaculture. Review in Aquaculture,14(3);1234-1248. https://doi.org/10.1111/raq.12647

O’Connor, P.M., Kuniyoshi, T. M., Oliveira, R. P. S., Hill, C., Ross, R. P., Cotter, P. D. (2020) Antimicrobials for food and feed; a bacteriocin perspective. Current Opinion in Biotechnology.61;160-167. https://doi.org/10.1016/j.copbio.2019.12.023

Ovchinnikov KV, Chi H, Mehmeti I, Holo H, Nes IF, Diep DB (2016) Novel group of leaderless multipeptide bacteriocins from gram-positive bacteria. Appl Environ Microbiol;82:5216–24. https://doi.org/10.1128/AEM.01094-16

Raja, R. A. & Jithendran, K. P. (2015) Aquaculture disease diagnosis and health management. in advances in marine and brackishwater aquaculture; Perumal S, R Thirunavukkarasu A, Pachiappan P, Ed,;Springer: New Delhi, India,247–255, ISBN 978-81-322-2271-2.

Rodger, H. D. (2016) Fish disease causing economic impact in global aquaculture. In Fish Vaccines; Adams A., Ed.; Springer: Basel, Switzerland,1–34. ISBN 978-3-0348-0980-1.

Russo, G., Iannetta, M., D’Abramo, A., Mascellino, M. T., Pantosti, A.. Erario L., Tebano, G., Oliva, A., D’Agostino, C., Trinchieri, V., & Vullo, V. (2012) Lactococcus garvieae endocarditis in a patient with colonic diverticulosis: first case report in Italy and review of the literature. New Microbiol;35:495-501. PMID: 23109019

Schuüller, V. J., Heidegger, S., Sandholzer, N., Nickels, P. C., Suhartha, N. A., Endres, S., Bourquin, C., & Liedl, T. (2011) Cellular immunostimulation by CpG-Sequence-Coated DNA origami structures. American Chemical Society. Vol. 5 (12);9696-9702. 9696-9702. 10.1021/nn203161y.

Tosukhowong, A., Zendo, T., Visessanguan, W., Roytrakul, S., Pumpuang, L., Jaresitthikunchai, J., & Sonomoto, K (2012) Garvieacin Q a novel class II bacteriocin from Lactococcus garvieae BCC 43578. Appl Environ Microbiol 2012;78:1619–23. https://doi.org/10. 1128/AEM.06891-11.

Varsha, K. K. & Nampoothiri, K. M. (2016) Lactococcus garvieae subsp. bovis subsp. nov., lactic acid bacteria isolated from wild gaur (Bos gaurus) dung, and description of Lactococcus garvieae subsp. garvieae subsp. Nov. International Journal of Systemic and Evolutionary Microbiology (66);3805-3809. DOI 10.1099/ijsem.0.001268

Vendrell D, Balcázar JL, Calvo AC, de Blas I, Ruiz-Zarzuela I, Gironés O, Múzquiz JL (2009) Quantitative analysis of bacterial adhesion to fish tissue. Colloids and Surfaces B: Biointerfaces.71(2);331–333. https://doi.org/10.1016/j.colsurfb.2009.03.003

Verma DK, Thakur M, Singh S, Tripathy S, Gupta AK, Baranwal D, Patel AR, Shah N, Utama GL, Niamah AK, Chávez-González ML, Gallegos CF, Aguilar CN, Srivastav PP. 2022. Bacteriocins as antimicrobial and preservative agents in food: Biosynthesis, separation and application. Food Bioscience,46. https://doi.org/10.1016/j.fbio.2022.101594.

Villani, f., Aponte, M., Blaiotta, G., Mauriello, G., Pepe, O., & Moschetti, G. (2001) Detection and characterization of a bacteriocin, garviecin L1–5, produced by Lactococcus garvieae isolated from raw cow's milk. J Appl Microbiol;90:430–9. https://doi.org/10. 1046/j.1365-2672.2001.01261.x.

Wibawan, I. W. T., & Lammler, C (1991) Influence of capsular neuraminic on properties of Streptococci of serological group B. Microbiology. Vol. 137(12);2721-2725. PMID: 1791427 DOI: 10.1099/00221287-137-12-2721

Woraprayote W, Malila Y, Sorapukdee S, Swetwiwathana A, Benjakul S, Visessanguan W (2016) Bacteriocins from lactic acid bacteria and their applications in meat and meat products. Meat Sci.;120:118-132. DOI: 10.1016/j.meatsci.2016.04.004.

Xue X, Woldemariam NT, Caballero-Solares A, Umasthan N, Fast RG, Taylor RG, Rise ML, Andreassen R (2019) Dietary immunostimulant CpG modulates microRNA biomarkers associated with immune responses in Atlantic salmon (Salmo salar). Cells.8(12),1592; doi:10.3390/cells8121592




DOI: http://dx.doi.org/10.15578/iaj.19.1.2024.87-98

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Creative Commons License
Indonesian Aquaculture Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats
p-ISSN: 0215-0883
e-ISSN: 2502-6577

 

Hasil gambar untuk isjd