Lactococcus garvieae: CHARACTERIZATION AND ABILITY TO INHIBIT THE GROWTH OF AQUACULTURE PATHOGENIC BACTERIA
Abstract
Keywords
Full Text:
PDFReferences
Abass N, Simora RMC, Wang J, Li S, Xing D, Coogan M, Johnson A, Creamer D, Wang X, Dunham RA. (2022). Fish & Shellfish Immunology;126;311-317. https://doi.org/10.1016/j.fsi.2022.05.050
Abdelfatah, E. N., & Mahboub, H. H. H. (2018) Studies on the effect of Lactococcus garvieae of dairy origin on both cheese and Nile tilapia (O. niloticus). International Journal of Veterinary Science and Medicine (6);201-207. https://doi.org/10.1016/j.ijvsm.2018.11.002.
Al-Harbi, A. H. (2011) Molecular characterization of Streptococcus iniae isolated from hybrid tilapia (Oreochromis niloticus × Oreochromis aureus). Aquaculture.312(1-4);15-18. http://dx.doi.org/10.1016/j.aquaculture.2010.12.014.
Basri L, Nor RM, Salleh A, Md. Yasin IS, Saad MZ, Abd. Rahaman NY, Barkham T, Amal MNA (2020) Co-infections of tilapia lake virus, Aeromonas hydrophila and Streptococcus agalactiae in farmed red hybrid tilapia. Animals 10(11):2141. https://doi.org/10.3390/ani10112141
Borrero J, Brede DA, Skaugen M, Diep DB, Herranz C, Nes IF, Cintas LM, Herna´ndez PE (2011) Characterization of garvicin ML, a novel circular bacteriocin produced by Lactococcus garvieae DCC43, isolated from mallard ducks (Anas platyrhynchos). Appl Environ Microbiol (77):369–73. doi: 10.1128/AEM.01173-10.
Chi, H., & Holo, H. (2018) Synergistic antimicrobial activity between the broad spectrum bacteriocin garvicin KS and Nisin, farnesol and polymyxin B against Gram-positive and Gram-negative bacteria. Current Microbiology.75;272-277. DOI: 10.1007/s00284-017-1375-y
CLSI-Clinical and Laboratory Standards Institute (2018) M100 performance standards for antimicrobial susceptibility testing. Edisi 28. Wayne. USA.p;30-37
Delphino, M. K. V. C., Barone, R. S. C., Leal, C. A. G., Figueiredo, H. C. P., Gardner, I. A., & Gonçalves, V. S. P. (2019) Economic appraisal of vaccination against Streptococcus agalactiae in Nile tilapia farms in Brazil. Preventive Veterinary Medicine.162(1);131-135. DOI: 10.1016/j.prevetmed.2018.12.003
Dubey, S., Diep, D. B., Evensen, Ø., & Munang’andu, H. M. (2022) Garvicin KS, a broad-spectrum bacteriocin protects zebrafish larvae against Lactococcus garvieae infection. Int J Mol Sci. 2022 Mar; 23(5): 2833. doi: 10.3390/ijms23052833.
FAO.(2020). The state of world fisheries and aquaculture 2020. Sustainability in Action; FAO: Rome, Italy.
Ferrario, C., Ricci, G., Milani, C., Lugli, G. A., Ventura, M., Eraclio, G., Borgo, F., & Fortina, M.G. (2013) Lactococcus garvieae: Where is it from? a first approach to explore the evolutionary history of this emerging pathogen. PLoS ONE 8(12): e84796. https://doi.org/10.1371/journal.pone.0084796
Flores-Kossack, C., Montero, R., Köllner, B., & Maisey. (2020) Chilean aquaculture and the new challenges: pathogens, immune response, vaccination and fish diversification. Fish Shellfish Immunol. 2020;98:52-67.DOI: 10.1016/j.fsi.2019.12.093
Garg, P., & Sharma, S. (2020) Identification of CpG islands in DNA sequences using short time fourier transform. Interdisciplinary Sciences: Computational Life Sciences.12;355-367 https://doi.org/10.1007/s12539-020-00370-y
Jin, W., Jiang, L., Hu, S., & Aiyi, Z. (2023) Metabolite features of serum and intestinal microbiota response of largemouth bass (Micropterus salmoides) after Aeromonas hydrophila challenge. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology;263. https://doi.org/10.1016/j.cbpc.2022.109496
Lee, K., Kim, D-W., Lee, D-H., Kim, Y-S., Bu, J-H., Cha, J-C., Thawng, C. N., ... Cha, C-J. (2020) Mobile resistome of human gut and pathogen drives anthropogenic bloom of antibiotic resistance, Microbiome;8;2https://doi.org/10.1186/s40168-019-0774-7
Maldonado-Barragán, A., Alegría-Carrasco, E., Blanco, M. D. M., Vela, A. S., Fernández-Garayzábal, J. F., Rodríguez, J. M., & Gibello, M. (2022) Garvicins AG1 and AG2: Two Novel Class IId Bacteriocins of Lactococcus garvieae Lg-Granada. Int J Mol Sci.2022,23(9):4685.DOI: 10.3390/ijms23094685
Maldonado-Barragán, A., Cárdenas, N., Maránez, B., Ruiz-Barba, L., Fernández-Garayzábal, F., Rodráquez, J. M., & Gibello, A. (2013) Garvicins A, a Novel class IId bacteriocin from Lactococcus garvieae that inhibits septum formation in L. garvieae strains. Appl Environ Microbiol 2013;79:4336–46. https://doi.org/10.1128/AEM.00830-13
Mattos-Guaraldi, A. L., Formiga, L. C., & Andrade, A. F. (1999) Cell surface hydrophobicity of sucrose fermenting and nonfermenting Corynebacterium diphtheriae strains evaluated by different methods. Current Microbiology 38(1),37-42. doi:10.1007/pl00006769. PMID: 9841780.
Mawardi. M., Jelani., Zainun, Z., Mundayana, Y., Chilora, B. S., Hardi, E. H. (2018) Identification and characterization of Edwardsiella ictaluri from diseased Pangasius pangasius, cultured in Cirata Lake, Indonesia. Biodiversitas.19(3);816-822. DOI: 10.13057/biodiv/d190309
Mencía-Ares O, Cabrera-Rubio R, Cobo-Díaz JF, Álvarez-Ordóñez A, Gómez-García M, Puente H, Cotter PD, Crispie F, Carvajal A , Rubio P, Argüello H (2020) Antimicrobial use and production system shape the fecal, environmental, and slurry resistomes of pig farms. Microbiome,8;164. https://doi.org/10.1186/s40168-020-00941-7
Munang’andu, H. M. (2018) Intracellular Bacterial Infections: A challenge for developing cellular mediated immunity vaccines for farmed fish. Microorganisms,6, 33. DOI:10.3390/microorganisms6020033
Nayak, A., Karunasagar, I., Chakraborty, A., & Maiti, B. (2021). Potential application of bacteriocins for sustainable aquaculture. Review in Aquaculture,14(3);1234-1248. https://doi.org/10.1111/raq.12647
O’Connor, P.M., Kuniyoshi, T. M., Oliveira, R. P. S., Hill, C., Ross, R. P., Cotter, P. D. (2020) Antimicrobials for food and feed; a bacteriocin perspective. Current Opinion in Biotechnology.61;160-167. https://doi.org/10.1016/j.copbio.2019.12.023
Ovchinnikov KV, Chi H, Mehmeti I, Holo H, Nes IF, Diep DB (2016) Novel group of leaderless multipeptide bacteriocins from gram-positive bacteria. Appl Environ Microbiol;82:5216–24. https://doi.org/10.1128/AEM.01094-16
Raja, R. A. & Jithendran, K. P. (2015) Aquaculture disease diagnosis and health management. in advances in marine and brackishwater aquaculture; Perumal S, R Thirunavukkarasu A, Pachiappan P, Ed,;Springer: New Delhi, India,247–255, ISBN 978-81-322-2271-2.
Rodger, H. D. (2016) Fish disease causing economic impact in global aquaculture. In Fish Vaccines; Adams A., Ed.; Springer: Basel, Switzerland,1–34. ISBN 978-3-0348-0980-1.
Russo, G., Iannetta, M., D’Abramo, A., Mascellino, M. T., Pantosti, A.. Erario L., Tebano, G., Oliva, A., D’Agostino, C., Trinchieri, V., & Vullo, V. (2012) Lactococcus garvieae endocarditis in a patient with colonic diverticulosis: first case report in Italy and review of the literature. New Microbiol;35:495-501. PMID: 23109019
Schuüller, V. J., Heidegger, S., Sandholzer, N., Nickels, P. C., Suhartha, N. A., Endres, S., Bourquin, C., & Liedl, T. (2011) Cellular immunostimulation by CpG-Sequence-Coated DNA origami structures. American Chemical Society. Vol. 5 (12);9696-9702. 9696-9702. 10.1021/nn203161y.
Tosukhowong, A., Zendo, T., Visessanguan, W., Roytrakul, S., Pumpuang, L., Jaresitthikunchai, J., & Sonomoto, K (2012) Garvieacin Q a novel class II bacteriocin from Lactococcus garvieae BCC 43578. Appl Environ Microbiol 2012;78:1619–23. https://doi.org/10. 1128/AEM.06891-11.
Varsha, K. K. & Nampoothiri, K. M. (2016) Lactococcus garvieae subsp. bovis subsp. nov., lactic acid bacteria isolated from wild gaur (Bos gaurus) dung, and description of Lactococcus garvieae subsp. garvieae subsp. Nov. International Journal of Systemic and Evolutionary Microbiology (66);3805-3809. DOI 10.1099/ijsem.0.001268
Vendrell D, Balcázar JL, Calvo AC, de Blas I, Ruiz-Zarzuela I, Gironés O, Múzquiz JL (2009) Quantitative analysis of bacterial adhesion to fish tissue. Colloids and Surfaces B: Biointerfaces.71(2);331–333. https://doi.org/10.1016/j.colsurfb.2009.03.003
Verma DK, Thakur M, Singh S, Tripathy S, Gupta AK, Baranwal D, Patel AR, Shah N, Utama GL, Niamah AK, Chávez-González ML, Gallegos CF, Aguilar CN, Srivastav PP. 2022. Bacteriocins as antimicrobial and preservative agents in food: Biosynthesis, separation and application. Food Bioscience,46. https://doi.org/10.1016/j.fbio.2022.101594.
Villani, f., Aponte, M., Blaiotta, G., Mauriello, G., Pepe, O., & Moschetti, G. (2001) Detection and characterization of a bacteriocin, garviecin L1–5, produced by Lactococcus garvieae isolated from raw cow's milk. J Appl Microbiol;90:430–9. https://doi.org/10. 1046/j.1365-2672.2001.01261.x.
Wibawan, I. W. T., & Lammler, C (1991) Influence of capsular neuraminic on properties of Streptococci of serological group B. Microbiology. Vol. 137(12);2721-2725. PMID: 1791427 DOI: 10.1099/00221287-137-12-2721
Woraprayote W, Malila Y, Sorapukdee S, Swetwiwathana A, Benjakul S, Visessanguan W (2016) Bacteriocins from lactic acid bacteria and their applications in meat and meat products. Meat Sci.;120:118-132. DOI: 10.1016/j.meatsci.2016.04.004.
Xue X, Woldemariam NT, Caballero-Solares A, Umasthan N, Fast RG, Taylor RG, Rise ML, Andreassen R (2019) Dietary immunostimulant CpG modulates microRNA biomarkers associated with immune responses in Atlantic salmon (Salmo salar). Cells.8(12),1592; doi:10.3390/cells8121592
DOI: http://dx.doi.org/10.15578/iaj.19.1.2024.87-98
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Aquaculture Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.