GROWTH, IMMUNITY, AND RESISTANCE OF CATFISH (Clarias sp.) REARED IN BIOFLOC SYSTEM SUPPLEMENTED WITH Bacillus NP5 AGAINST Aeromonas hydrophila INFECTION
Abstract
Catfish Clarias sp. is one of the leading commodities in demand and has economic value. Low survival due to cannibalism and disease is a serious problem. To overcome these problems is application of bioflocs and probiotics Bacillus NP5. This study aimed to analyze the appropriate dose of Bacillus NP5 probiotic addition to the biofloc system to improve the health status, growth performance, water quality, and resistance to A. hydrophila. The catfish fry (Clarias sp.) with an average weight of 1.79±0.05 g was used in the experiment for 40 days, reared in tanks with the dimension of 60×30×35 cm3. The experiment applied a completely randomized design (CRD) of five treatments with three replicates, namely KN (negative control), KP (positive control), BFT (biofloc application without probiotic bacteria), BFT4 (biofloc application with Bacillus NP5 104 CFU mL-1), BFT6 (biofloc application with Bacillus NP5 106 CFU mL-1). Treatments tested were challenged with A. hydrophila density 104 CFU mL-1 by immersion, except the negative control. After 40 days of rearing, biofloc and Bacillus NP5 treatments had a significant effect (P < 0.05) on growth performance, immune response, water quality, total bacteria in water and the gut compared to the control treatment (P < 0.05). In addition, total A. hydrophila in liver, kidney and water were lower (P < 0.05) in BFT4 and BFT6 treatments than the control. The conclusion of this study is that the bioflocs supplemented with Bacillus NP5 improved the growth performance, immune response and resistance of catfish to A. hydrophila infection.
Keywords
Full Text:
PDFReferences
Abdelrahman, H. A., Hemstreet, W. G., Roy, L. A., Hanson, T. R., Beck, B. H., & Kelly, A. M. (2023). Epidemiology and economic impact of disease-related losses on commercial catfish farms: A seven-year case study from Alabama, USA. Aquaculture, 566, 739206. https://doi.org/10.1016/j.aquaculture.2022.739206.
Adeoye, A. A., Yomla, R., Jaramillo-Torres, A., Rodiles, A., Merrifield, D. L., & Davies, S. J. (2016). Combined effects of exogenous enzymes and probiotic on Nile tilapia (Oreochromis niloticus) growth, intestinal morphology and microbiome. Aquaculture, 463, 61–70. https://doi.org/10.1016/j.aquaculture.2016.05.028.
Agung, L. A., Widanarni, & Yuhana, M. (2015). Application of micro-encapsulated probiotic Bacillus NP5 and prebiotic mannan oligosaccharide (MOS) to prevent streptococcosis on tilapia Oreochromis niloticus. Research Journal of Microbiology, 10(12), 571–581. https://doi.org/10.3923/jm.2015.571.581.
Ahmad, I., Verma, A. K., Babitha Rani, A. M., Rathore, G., Saharan, N., & Gora, A. H. (2016). Growth, non-specific immunity and disease resistance of Labeo rohita against Aeromonas hydrophila in biofloc systems using different carbon sources. Aquaculture, 457, 61–67. https://doi.org/10.1016/j.aquaculture.2016.02.011.
Amjad, K., Dahms, H. U., Ho, C. H., Wu, Y. C., Lin, F. Y., & Lai, H. T. (2022). Probiotic additions affect the biofloc nursery culture of white shrimp (Litopenaeus vannamei). Aquaculture, 560, 738475. https://doi.org/10.1016/j.aquaculture.2022.738475.
Anderson, D.P., & Siwicki, A.K. (1995). Basic haematology and serology for fish health programmes. Diseases in Asian aquaculture II. Manila. Philippines. 185-202. Fish Health Section, Asian Fisheries Society.
Azimi, A., Shekarabi, S. P. H., Paknejad, H., Harsij, M., Khorshidi, Z., Zolfaghari, M., Hatami, A. S., Dawood, M. A. O., Mazloumi, N., & Zakariaee, H. (2022). Various carbon/nitrogen ratios in a biofloc-based rearing system of common carp (Cyprinus carpio) fingerlings: Effect on growth performance, immune response, and serum biochemistry. Aquaculture, 548, 1–6. https://doi.org/10.1016/j.aquaculture.2021.737622.
Blaxhall, P.C., & Daisley, K.W. (1973). Routine haematological methods for the use of fish blood. Journal of Fish Biology, 5(6), 771-781. doi.org/10.1111/j.1095-8649.1973.tb04510.x.
Buchmann, K. (2022). Neutrophils and aquatic pathogens. Parasite Immunology, 44(6), 1–11. https://doi.org/10.1111/pim.12915.
Cerezuela, R., Fumanal, M., Tapia-Paniagua, S. T., Meseguer, J., Moriñigo, M. ángel, & Esteban, M. ángeles. (2013). Changes in intestinal morphology and microbiota caused by dietary administration of inulin and Bacillus subtilis in gilthead sea bream (Sparus aurata L.) specimens. Fish and Shellfish Immunology, 34(5), 1063–1070. https://doi.org/10.1016/j.fsi.2013.01.015.
Chen, J., Ren, Y., Wang, G., Xia, B., & Li, Y. (2018). Dietary supplementation of biofloc influences growth performance, physiological stress, antioxidant status and immune response of juvenile sea cucumber Apostichopus japonicus (Selenka). Fish and Shellfish Immunology, 72, 143–152. https://doi.org/10.1016/j.fsi.2017.10.061.
Chen, J. S., Hsu, G. J., Hsu, B. M., Yang, P. Y., Kuo, Y. J., Wang, J. L., Hussain, B., & Huang, S. W. (2021). Prevalence, virulence-gene profiles, antimicrobial resistance, and genetic diversity of human pathogenic Aeromonas spp. from shellfish and aquatic environments. Environmental Pollution, 287, 1–11. https://doi.org/10.1016/j.envpol.2021.117361.
Crab, R., Lambert, A., Defoirdt, T., Bossier, P., & Verstraete, W. (2010). The application of bioflocs technology to protect brine shrimp (Artemia franciscana) from pathogenic Vibrio harveyi. Journal of Applied Microbiology, 109(5), 1643–1649. https://doi.org/10.1111/j.1365-2672.2010.04791.x.
Dauda, A. B., Romano, N., Ebrahimi, M., Teh, J. C., Ajadi, A., Chong, C. M., Karim, M., Natrah, I., & Kamarudin, M. S. (2018). Influence of carbon/nitrogen ratios on biofloc production and biochemical composition and subsequent effects on the growth, physiological status and disease resistance of African catfish (Clarias gariepinus) cultured in glycerol-based biofloc systems. Aquaculture, 483, 120–130. https://doi.org/10.1016/j.aquaculture.2017.10.016.
De Schryver, P., Crab, R., Defoirdt, T., Boon, N., & Verstraete, W. (2008). The basics of bio-flocs technology: The added value for aquaculture. Aquaculture, 277(3–4), 125–137. https://doi.org/10.1016/j.aquaculture.2008.02.019.
Effendi, M.I. (1997). Fisheries biology. Yogyakarta (ID): Yayasan Pustaka Nusatama.
Ekasari, J., Hanif Azhar, M., Surawidjaja, E. H., Nuryati, S., De Schryver, P., & Bossier, P. (2014). Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources. Fish and Shellfish Immunology, 41(2), 332–339. https://doi.org/10.1016/j.fsi.2014.09.004.
Ekasari, J., Napitupulu, A. D., Djurstedt, M., Wiyoto, W., Baruah, K., & Kiessling, A. (2023). Production performance, fillet quality and cost effectiveness of red tilapia (Oreochromis sp.) culture in different biofloc systems. Aquaculture, 563, 738956. https://doi.org/10.1016/j.aquaculture.2022.738956.
Fijan, S. (2023). Probiotics and their antimicrobial effect. Microorganisms, 11(2), 17–20. https://doi.org/10.3390/microorganisms11020528.
Gustilatov, M., Widanarni, Ekasari, J., & Pande, G. S. J. (2022). Protective effects of the biofloc system in Pacific white shrimp (Penaeus vannamei) culture against pathogenic Vibrio parahaemolyticus infection. Fish and Shellfish Immunology, 124, 66–73. https://doi.org/10.1016/j.fsi.2022.03.037.
Haraz, Y. G., Shourbela, R. M., El-Hawarry, W. N., Mansour, A. M., & Elblehi, S. S. (2023). Performance of juvenile Oreochromis niloticus (Nile tilapia) raised in conventional and biofloc technology systems as influenced by probiotic water supplementation. Aquaculture, 566, 739180. https://doi.org/10.1016/j.aquaculture.2022.739180.
Hassan, S. A. H., Sharawy, Z. Z., El Nahas, A. F., Hemeda, S. A., El-Haroun, E., & Abbas, E. M. (2022). Carbon sources improve water quality, microbial community, immune-related and antioxidant genes expression and survival of challenged Litopenaeus vannamei Postlarvae in biofloc system. Aquaculture Research, 53(17), 5902–5914. https://doi.org/10.1111/are.16058.
He, X., Abakari, G., Tan, H., LIU, W., & Luo, G. (2023). Effects of different probiotics (Bacillus subtilis) addition strategies on a culture of Litopenaeus vannamei in biofloc technology (BFT) aquaculture system. Aquaculture, 566, 739216. https://doi.org/10.1016/j.aquaculture.2022.739216.
Hossain, M. K., Hossain, M. D., & Rahman, M. H. (2007). Histopathology of some diseased fishes. Journal of Life and Earth Science, 2(2), 47–50. https://doi.org/10.3329/jles.v2i2.7497.
Indonesian Ministry of Marine Affairs and Fisheries. (2022). Performance report of Directorate General of Aquaculture (DJPB). Directorat.
Ivey, C. R. R., Figueras, M. J., McGarey, D., & Liles, M. R. (2016). Virulence factors of Aeromonas hydrophila: In the wake of reclassification. Frontiers in Microbiology, 7, 1–10. https://doi.org/10.3389/fmicb.2016.01337.
Khanjani, M. H., Sharifinia, M., & Emerenciano, M. G. C. (2023). A detailed look at the impacts of biofloc on immunological and hematological parameters and improving resistance to diseases. Fish and Shellfish Immunology, 137, 108796. https://doi.org/10.1016/j.fsi.2023.108796.
Kim, S. K., Pang, Z., Seo, H. C., Cho, Y. R., Samocha, T., & Jang, I. K. (2014). Effect of bioflocs on growth and immune activity of Pacific white shrimp, Litopenaeus vannamei postlarvae. Aquaculture Research, 45(2), 362–371. https://doi.org/10.1111/are.12319.
Kumar, V., Wille, M., Lourenço, T. M., & Bossier, P. (2020). Biofloc-based enhanced survival of Litopenaeus vannamei upon AHPND-causing Vibrio parahaemolyticus challenge is partially mediated by reduced expression of Its virulence genes. Frontiers in Microbiology, 11, 1–12. https://doi.org/10.3389/fmicb.2020.01270.
Menaga, M., Felix, S., Charulatha, M., Gopalakannan, A., & Panigrahi, A. (2019). Effect of in-situ and ex-situ biofloc on immune response of genetically improved farmed tilapia. Fish and Shellfish Immunology, 92, 698–705. https://doi.org/10.1016/j.fsi.2019.06.031.
Mirzakhani, N., Ebrahimi, E., Jalali, S. A. H., & Ekasari, J. (2019). Growth performance, intestinal morphology and nonspecific immunity response of Nile tilapia (Oreochromis niloticus) fry cultured in biofloc systems with different carbon sources and input C:N ratios. Aquaculture, 512, 734235. https://doi.org/10.1016/j.aquaculture.2019.734235.
Muharrama, A. R. W., Widanarni, W., Alimuddin, A., & Yuhana, M. (2022). Gene expression and immune response of pacific white shrimp given Bacillus NP5 probiotic and honey prebiotic and Vibrio parahaemolyticus infection. Journal of Applied Aquaculture, 34(3), 625–641. https://doi.org/10.1080/10454438.2021.1873888.
Ogello, E. O., Outa, N. O., Obiero, K. O., Kyule, D. N., & Munguti, J. M. (2021). The prospects of biofloc technology (BFT) for sustainable aquaculture development. Scientific African, 14, 1–11. https://doi.org/10.1016/j.sciaf.2021.e01053.
Pérez-Fuentes, J. A., Pérez-Rostro, C. I., Hernández-Vergara, M. P., & Monroy-Dosta, M. del C. (2018). Variation of the bacterial composition of biofloc and the intestine of Nile tilapia Oreochromis niloticus, cultivated using biofloc technology, supplied different feed rations. Aquaculture Research, 49(11), 3658–3668. https://doi.org/10.1111/are.13834.
Rai, S., Tyagi, A., Naveen Kumar, B. T., & Reddy S, V. K. (2023). Isolation and characterization of Aeromonas hydrophila lytic phage, and evaluation of a phage cocktail against A. hydrophila contamination in fish fillet. Food Control, 145, 109460. https://doi.org/10.1016/j.foodcont.2022.109460.
Saha, J., Hossain, M. A., Mamun, M. Al, Islam, M. R., & Alam, M. S. (2022). Effects of carbon-nitrogen ratio manipulation on the growth performance, body composition and immunity of stinging catfish Heteropneustes fossilis in a biofloc-based culture system. Aquaculture Reports, 25, 101274. https://doi.org/10.1016/j.aqrep.2022.101274.
Sharma, J. G., Singh, A., Begum, A., Sonia, Krishna, V. H., & Chakrabarti, R. (2021). The impact of Achyranthes aspera seeds and leaves supplemented feeds on the survival, growth, immune system and specific genes involved in immunostimulation in Clarias batrachus fry challenged with Aeromonas hydrophila in pond conditions. Fish and Shellfish Immunology, 118, 11–18. https://doi.org/10.1016/j.fsi.2021.08.026.
Steel & Torrie. (1993). Principles and Procedures of Statistics A Biometric Approach. Jakarta: PT Gramedia Pustaka Utama.
Tamamdusturi, R., Widanarni, & Yuhana, M. (2016). Administration of microencapsulated probiotic Bacillus sp. NP5 and prebiotic mannan oligosaccharide for prevention of Aeromonas hydrophila infection on Pangasianodon hypophthalmus. Journal of Fisheries and Aquatic Science, 11(1), 67–76. https://doi.org/10.3923/jfas.2016.67.76.
Wedemeyer, G.A., & Yasutake, W.T. (1977). Clinical methods for the assessment of environmental stress effects on fish health. Technical paper Washington DC. 89:1-17. United States fish and wildlife service.
Widanarni, W., Aswandi, D. S., Rahman, R., & Munaeni, W. (2022). Effects of feeding Artemia sp. and artificial feed enriched with Bacillus sp. NP5 to catfish Pangasianodon hypophthalmus on growth performance, immune responses, and resistance to Aeromonas hydrophila infection. Research Square, 1–22. https://www.researchsquare.com/article/rs-1741085/latest.pdf.
Zhao, X., Chen, L., Wongmaneepratip, W., He, Y., Zhao, L., & Yang, H. (2021). Effect of vacuum impregnated fish gelatin and grape seed extract on moisture state, microbiota composition, and quality of chilled seabass fillets. Food Chemistry, 354, 129581. https://doi.org/10.1016/j.foodchem.2021.129581.
Zokaeifar, H., Balcázar, J. L., Saad, C. R., Kamarudin, M. S., Sijam, K., Arshad, A., & Nejat, N. (2012). Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei. Fish and Shellfish Immunology, 33(4), 683–689. https://doi.org/10.1016/j.fsi.2012.05.027.
DOI: http://dx.doi.org/10.15578/iaj.19.1.2024.45-56
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Aquaculture Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.