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INTRODUCTION

A CPUE reveals as the quantity of fish (in numbers
or in weight) by given amount of fishing effort.
Generally, CPUE is used as an index of fish abundance
in the water. Its mean that proporsional change in
CPUE is expected to the proporsional change in the
stock size (Riswanto, 2012; Chen & Chiu, 2009;
Bordalo-Machado, 2006; Maunder & Punt, 2004;
Ortega-Garcia et al., 2003). The abundance index of
fish is mostly based on CPUE index especially on
industrial tuna longline fishery (Maunder & Punt, 2004;
Maunder et al., 2006a; Maunder et al., 2006b; Ward
& Hindmarsh, 2007). The abundance index based on
nominal CPUE on tuna longline fleets did not taken
into account confounding factors such as fishing
strategy and water environment condition, which can
separate indication of abundance based on hook rate
(Bach et al., 2000; Hampton et al., 1998). Therefore,
the relative abundance index based on nominal CPUE
data can lead to mistakes and unable to reflect the
actual condition of fish resource (Maunder & Punt,
2004; Walters, 2003).
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ABSTRACT

Albacore (Thunnus alalunga) is the third dominant catch of Indonesian tuna longline fishery
operating in the eastern Indian Ocean. The percentage production of albacore catch was reaching
up 6% of the total catch of tuna groups in Indonesia. Thi study aims to examine a relative abundance
indices using standardized catch per unit of effort (CPUE) of longliner based on albacore tuna.
This information will give a valuable input and information to support stock assessment particularly
in the regional basis. In this study, we use Generalized Linear Model (GLM) with Tweedie distribution
to standardize the CPUE and to estimate relative abundance indices based on the Indonesian
longline dataset time series. Data were collected from January 2006 to October 2015 (106 trip
observer and 8.989 fishing days) by conducting direct onboard observation on tuna longline vessels
operating in the Indian Ocean. The result show that year, area,hooks between floats, year*season,
year*area and year* hooks between floats significantly influenced the nominal CPUE of albacore.
The highest value of Standardized CPUE appeared in 2014 and probably related to the large
number of foreign fishing vessels with a high capacity (over 60 GT) targeting frozen tuna including
albacore. In 2015, standardized CPUE value was sharply decreased due to the ban of foreign
vessels in Indonesia.
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Albacore (ALB) (Thunnus alalunga) is the third
dominant catch after yellowfin tuna (Thunnus
albacares) and bigeye tuna (Thunnus obesus) with
the percentage of production reached up 6 % of the
total catch of tuna groups of 1.297.062 ton (DGCF,
2014). However, based on the distribution of hook rate
tuna in the Indian Ocean,ALB has the highest average
catches of tuna longline vessels (Bahtiar et al., 2014).
ALB resource spread widely in tropical and subtropical
water in Pacific, Indian and Atlantic Ocean (ISSF,
2014). ALB is caught by Indonesian longline fleets
which operated in Eastern Indian Ocean is frozen
product and exported to Sweden (53,4 %), Italy
(18,7%), Poland (17,8%) dan Japan (10 %) (Davis &
Andamari, 2003). ALB catches intensity is high, so
we need a sustainable management to avoid
overfishing which causes the decreasing population
of ALB in the Indian Ocean. CPUE data are important
to know as one of valuable input for fish resource
management study.

A CPUE standardization is one of the general
analysis which used to predict fish abundance index
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and fish resource utilization rate by including
confounding factors such as catch operational
(Maunder & Punt, 2004; Bigelow & Hampton, 2007;
Maunder et al., 2006a). Several methods have been
developed to standardize CPUE in fisheries data such
as generalized linear model (GLM), generalised
additive model (GAM), generalised linear mixed model
(GLMM) dan delta approachment (Dowling &
Campbell, 2001; Maunder et al., 2006a; Maunder and
Punt, 2004). Su et al. (2008) was used GLM, GAM
and delta approachment to analysis bigeye tuna
CPUE standardization for Taiwan tuna longline
fisheries. Sadiyah et al. (2012) applied the GLM
method to develop recommendation of CPUE
standardization based on Indonesian tuna longline
observer data.

The aims of this study are to analysis ALB CPUE
standardization model and comparison between
nominal and standardized CPUE. The result is
expected to support ALB management study in
Eastern Indian Ocean and update the information
which was previously reported by Sadiyah et al.
(2012).

MATERIALS AND METHODS
Data Collection

Data were collected through a scientific onboard
observer program on tuna longline fleets based in
Muara Baru fishing port (Jakarta), Palabuhanratu (West
Java), Cilacap (Central Java) and Benoa (Bali) that
operated in the eastern Indian Ocean. Data were
collected from January 2006 to October 2015 (106
trips observer and 8.989 fishing days). From 106 trips
observer, Benoa station dominated the trips (97 trips)
followed by Palabuhanratu (4 trips), Cilacap (3 trips)
and Muara Baru (2 trips). The data collection consist
of total catch, specifications of fishing gear, vessel
size, operational aspects and fishing area.

Nominal Catch per Unit of Effort (CPUE)

Catches data and the number of hooks per trip
was used to calculate hook rate and nominal CPUE.
Nominal CPUE or hook rate value was the number of
ALB catches in 100 hooks. Nominal CPUE was
calculated using equation of De Metrio & Megalofonou
(1998):

................................................... (1)

where:
HR = hook rate ;
JI = the number of ALB catches;

JP = the number of hook;
A = 100 hooks.

To determine whether there were any difference of
the average annual nominal CPUE based on different
period of the season (west monsoon and east
monsoon) and fishing sub-area, the t-test was used
on the average of two independent samples with
Microsoft Excel. Hypothesis to be test for different in
season was H

0
: the average CPUE in west monsoon

was equal with the average CPUE in east monsoon
and H

1
: the average CPUE in west monsoon was not

equal with the average CPUE in east monsoon.
Hypothesis for different fishing sub-area was H

0
: the

average of CPUE area one (1) was equal with the
average of CPUE area two (2) and H

1
: the average of

CPUE area one (1) was not equal with the average
CPUE area two (2). If value of t-test was greater than
t-table, then H

0
rejected which mean there were any

differences in the average value of CPUE.

Confounding Factors

Confounding factors on determining fishing effort
were fishing tactics and strategies are applied by
Indonesian tuna longliner to catch tuna fish. Fishing
tactic and strategy often different from longliner
althought they have similar target of fish. This different
practice and strategy are followed by the different
result of catch and catchability. This phenomena would
be affected the nominal trend of its CPUE trend. The
confounding factors which taken into account in GLM
model are :

a. Year

Year is the period of onboard observation. Data
divided into 11 categories ranged from 2006-2015.

b. Season

Fishing season is divided into two (2) categorical
data. There were west monsoon (December to
May) and east monsoon (June to November).

c. Fishing Area

Fishing position was recorded based on latitude
and longitude for each setting throughout trips of
onboard observation. Fishing area is divides into
two (2) sub-area which were operated in Eastern
Indian Ocean, there were an area inside the
Indonesian Exclusive Economic Zone (IEEZ) and
outside the Indonesian Exclusive Economic Zone
(Figure 1). Fishing sub-area were grouped in 5°x5°.

XA
JP

jI
HR 
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Figure 1. 2. Categorical sub-area used for CPUE standardization based on 2006-2015 onboard observation
(Remarks: sub-area 1 is inside IEEZ and sub-area 2 is outside IEEZ).

 ijjareaijjseasonijjYearcCPUE _321 
eieffortoffset ))(log(

Table 1. Confounding factor is (factor and covariate) used in GLM analysis

Factor Level Category Type
Year 1 to 11 2006- 2015 Categorical
Season 1 West Monsoon (December – May) Categorical

2 East Monsoon
(June – November)

Fishing Area 1 50-14.90 S; 950-1300 E Categorical
2 150-350 S; 750-1150 E

HBF 1 ≤ 12 hooks Categorical 
2 >12 hooks

Standardizing CPUE of Albacore Tuna.....................................................in Eastern Indian Ocean (Rochman, F., et al)

d. Hook Between Floats (HBF)

The information on the number of hooks between
floats (HBF) recorded based on setting data greatly
varies with 4-21 HBF. Confounding factors of HBF
was devided as 2 categorical i.e HBF 12 hooks
and HBF > 12 hooks, which will use for Generalized
Linear Model (GLM) analysis. HBF 12 hooks is a
limit between deep and mid-longline. Tuna longliner
based in Benoa is divided into 3 types, there are
surface longline, mid longline and deep longline
(Barata et al., 2011a). According to Irianto et al.
(2013), the surface longline type consisted of 5
hooks among buoy which was operated at depth
of 100 to 175 m, the mid longline type consist of
12 hooks among buoy which operated at depth of
125 to 350 m, and the deep longline type consist
of 18 hooks or more among buoy which operated
at depth of 150 to 450 m. In this analysis we use
12 hooks as limiting factor between medium and
depth longline.

Catch per Unit Effort (CPUE) Standardization on
GLM

The CPUE standardization enclosed confounding
factor as covariate variable was used in GLM analysis.
The result from Sadiyah et al. (2012) suggested that
some significant confounding factor for CPUE
standardization with GLM model were year, fishing
area, and HBF. In this study, we added another
confounding factor i. e the period of season (west
monsoon and east monsoon). GLM is flexible general
model on linear regression in which respond variables
have error distribution in addition of normal distribution.
The equation model of GLM used in CPUE
standardization as follows (Candy, 2004, Basson &
Farley, 2005):

..................…………..(2)

We used open source R software program to input
and analysis GLM fit model. (Table 1) show the whole
information of confounding factor which were used in
this analysis.


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Figure 2. Nominal CPUE of ALB time series based on onboard observation during 2006-2015.

29-38

The first step of the GLM analysis was used to
determine normality of data using normality test
(Kolmogorov-Smirnov and Shapiro-Wilk). If the
significant value was greater than á

0.05
, its mean that

the data was normaly distributed but if significant value
was lower than á

0.05
its mean that the data was not

normalt distributed. The next step was to determine
the fit distribution in GLM analysis. We used Tweedie
distribution and log link function as a fit distribution
because the distribution has a power variance function
with the power parameter (k) range between 1.1 and
1.9, which is suitable for zero CPUE in observation
(Appendix 2) (Bason & Farley, 2005; Candy, 2004).

AIC (Akaike Information Criterion) and BIC
(Bayesian Information Criterion) were used as criterion
of model selection in fish population dynamic. AIC
has a tendency to over estimate the number of
parameters even in a large sample and BIC has to
address the problem of over estimation in large
samples. To avoid a problem of overfitting because
the sample is greater that 1,000 sample based on
several pre-test model, the best model used in this

analysis based on stepwise AIC and BIC (Shono,
2005).

RESULTS AND DISCUSSION
Results

Nominal CPUE

The ALB nominal CPUE of longline catches
throughout the onboard observation 2006-2015
fluctuated. Nominal CPUE ranged from 0.117-0.519
with an average of 0.253 (Figure 2). The highest
nominal CPUE in 2012 and the lowest nominal CPUE
in 2009. In 2007, 2008, 2010, 2012, and 2014 nominal
CPUE were in above the average CPUE and in 2006,
2009 and 2015 were in under the average CPUE
threshold. Nominal CPUE regarding with different
season shows the CPUE range along east monsoon
was 0.075-0.716 and the CPUE range along west
monsoon was 0.070-0.516 (Figure 3). Nominal CPUE
based on the different fishing sub-area shows CPUE
range in area one (1) was 0.026-0.289 and CPUE
range in area two (2) was 0.032-0.973 (Figure 4).



33

Copyright © 2017, Indonesian Fisheries Research Journal (IFRJ)

Figure 3. Nominal CPUE ofALB based on season (east monsoon and west monsoon) throughout the onboard
observation ranged from 2006- 2015.

Figure 4. Nominal CPUE of ALB based on fishing area (sub-area 1 in IEEZ) dan (sub-area 2 OutIEEZ)
throughout the onboard observation ranged from 2006 - 2015.

Table 2. List of model option for ALB according to AIC and BIC Value

No Model Option AIC BIC Probability
Distribution

Link
Function

1 CPUE=Year 3685.715 3665.715 tweedie Log
2 CPUE=Year+Season 3686.119 3664.119 tweedie Log
3 CPUE=Year+Season+Area 3407.499 3383.499 tweedie Log
4 CPUE=Year+Season+Area+HBF 3043.441 2957.441 tweedie Log
5 CPUE=Year+Season+Area+HBF+

(Year*Season)+(Year*Area)+(Year*HBF)
3039.373 2959.373 tweedie Log

Standardizing CPUE of Albacore Tuna.....................................................in Eastern Indian Ocean (Rochman, F., et al)

Nominal CPUE based on different season shows
that the average nominal CPUE in east monsoon
was 0.230 and the average nominal CPUE in west
monsoon was 0.272.

Standardized CPUE

The best model option for ALB standardization
according to AIC and BIC criterion are presented in
(Table 2).
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Figure 5. Nominal and standardization ALB CPUE as a time series between 2006-2015 based on RITF
onboard observer program in Eastern Indian Ocean.

Table 3. Summary of significant level of each confounding factor in ALB CPUE standardization

DF Deviance
Residual

DF
Residual

Dev. F PR(>F)

NULL 2380 3495.0
Year 9 185.48 2371 3309.5 17.6273 < 2.2e-16 ***
Area 1 339.40 2370 2970.1 290.2987 < 2.2e-16 ***
HBF 1 33.91 2369 2936.2 29.0047 < 7.94e-08 ***
Season 1 0.83 2368 2935.4 0.7131 > 0.3985
Year : Season 9 185.57 2359 2749.8 17.6261 < 2.2e-16 ***
Year : Area 7 138.64 2352 2611.1 16.9411 < 2.2e-16 ***
Year : HBF 8 112.08 2344 2499.1 11.9835 < 2.2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 4. Predicted value of standardized CPUE of ALB and its standard error (upper and lower)

Year STDZ. CPUE Index SE Resid. Scale
2006 0.193 0.041 1.081
2007 0.213 0.049 1.081
2008 0.649 0.130 1.081
2009 0.081 0.049 1.081
2010 0.256 0.092 1.081
2011 0.165 0.059 1.081
2012 0.278 0.053 1.081
2013 0.445 0.115 1.081
2014 0.769 0.230 1.081
2015 0.087 0.063 1.081

29-38

The best model that has smallest AIC and BIC is
used to predict the CPUE standardization (Figure 5).
In ALB GLM analysis, year, season and area were
highly significant (p-value<0.05). The results of
significant level of each confounding factors were

summarized inTable 3 and the predicted value of CPUE
standardization and standard error (SE) were given in
Table 4. The randomized quantile residual diagnostic
for the best model was given in Appendix1.

The characteristic of standardized CPUE was any
smooth extreme peaks and troughs in nominal CPUE
time series (Figure 5).

Discussion

Temporal trends of nominal CPUEs were much
influenced by different factors which associated with

fishing practice and environmental condition (Sadiyah
et al., 2012). The different factor such as time of fishing
(year), season, fishing area and hook between float
(HBF) can cause an extreme value in nominal CPUE
time series. It is also alligned with other researches
(Song & Wu, 2011; Sadiyah et al., 2012). It seems
that all variables used in this GLM are analysis are
sufficiently representative for all confounding factor



35

Copyright © 2017, Indonesian Fisheries Research Journal (IFRJ)

Standardizing CPUE of Albacore Tuna.....................................................in Eastern Indian Ocean (Rochman, F., et al)

and the abundance and also described as real
variables.

In this study, there were several types of model
including interaction models between all of confounding
factor in GLM analysis but only few that have
significant relationship (Table 3). Its means that a
closed relationship and strong interaction always
appear in standardized CPUE using GLM analysis
(Maunder & Punt, 2004). Maunder & Punt, (2004) also
stated that simple interpretation cannot be used as a
basis information regarding to develop an abundance
Index of ALB fish.

The data from onboard observer program are long
time data series (2006-2015), it means that we could
find any phenomena regarding with fishing practice
and environmental condition including temporal and
seasonal abundance pattern. Temporal and seasonal
pattern were clearly defined in GLM analysis and would
give some indication which would confounding factors
may significantly influenced in nominal CPUE time
series.

The construction of the number of hooks between
floats (HBF) in the longline sets appears to be one of
the most significant confounding factor in CPUE and
catches ofALB. This is supported byprevious research
conducted by Sadiyah et al. (2012); Ijima et al. (2015)
that confirmed number of hooks contribute a significant
factors on predicting CPUE. The model with HBF as
covariate did not in out perform and can be search for
the relationship between HBF and CPUE using simple
linear regression model.

The determination of predictable fishing area also
has an effect of ALB catch because ALB is temperate
tuna (Rochman et al., 2016b; IOTC, 2014; Chen et
al., 2005). The distribution of ALB (mature and
immature) are strongly influenced by Oceanographic
condition (IOTC, 2014) such as sea surface
temperature (SST), temperature at depth of 100 m
(Temp_100), salinity at depth of 0 m (Sal_0) and
dissolved Oxygen at 200 m depth (OXY_200). Sea
surface temperature (SST) was the most significant
for immature, spawning and non-spawning stage of
ALB (Chen et al., 2005). Therefore, an area is one of
the most significant covariate on GLM analysis. Each
of fishing area (area 1; inside IEEZ; <15°S or 200 nm
south off Java island) and (area 2; outside IEEZ; >15°S
or over 200 nm south of Java island) has the variation
in the number and size of ALB catches. ALB caught
in area two (2) has a smaller size than in area one (1)
but with a higher number of catches or nominal CPUE.
The average size and nominal CPUE of ALB caught

in area one was (98.49 cmFL and 0.167) , while in the
area two was (96.49 cmFL and 0.583).

From the GLM analysis, the season independently
was insignificantly to influence the GLM model but if
we interact with year as interaction covariate it will be
significantly proved. This is probably due to migration
pattern ofALB in Indian Ocean rely on seasonal factor,
whether mature or immature ALB.According to Chen
et al. (2005), in west monsoon (May to July) the higher
CPUE of immature ALB contained in south of 30°S
and will be move to north of 25°S to 15°S in the east
monsoon (August to November). The immature ALB
will be back again to 30°S in west monsoon (February
to May). Chen et al. (2005) also stated that mature
ALB tend to stay in 25°S in west monsoon (May) and
15°S in east monsoon (August). At the end of east
monsoon (November) the higher CPUE of matureALB
occured in 10°S to 25°S.

The peak of standardized CPUE value occurred
2014 and may be related to a large number of foreign
fishing vessels with a large capacity (over 60 GT)
targeting frozen tuna including ALB. Those vessels
were fishing in distant waters (10 to 30°S) which are
mostly beyond EEZ jurisdiction where ALB widely
captured. It’s supported by (Rochman et al., 2016a)
which stated that the total number of tuna vessels
(local and foreign vessels) in 2014 was 915 units and
reduced to 760 units in 2015 and particularly fishing
in EEZ waters. This shifting fishing groud was probably
related to the implementation of the Minesterial
Decree No. 56 in 2014 and No. 10 in 2015 concerning
moratorium for fishing and transhipment. Generally,
as an effect of that regulation, a frozen product
including ALB was decreased in 2015 to at about
338,317 tons compared with 2014 430,2 tons
(Sulistyaningsih, 2014 ; Jatmiko, 2015). One should
be taken into account that standardization of ALB
CPUE index in 2015 can not be used as a reference
points in determining abundance of ALB stock in all
East Indian Ocean waters.

CONCLUSION

This study showed that the confounding factors,
namely year, area, HBF, interaction between
year*area, year*season, and year* HBF have effect
to CPUE. The season has insignificant influence of
standardizing CPUE but if interact with year as
interaction covariate, it will be significantly proved.
Temporal and seasonal pattern of ALB catch were
clearly defined in GLM analysis and would give some
indication which would confounding factors may
significantly influence the nominal CPUE time series.
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