Analisis Turbin Darrieus Tipe V-Shaped Blade Untuk Aplikasi Konverter Energi Arus Laut Menggunakan Software QBlade

Rizki Mendung Ariefianto, Rini Nur Hasanah, Wijono Wijono

Abstract


Turbin tipe Darrieus merupakan salah satu jenis turbin sumbu vertikal yang memiliki prospek menjanjikan dalam pengembangan turbin hidrokinetik, salah satunya dalam aplikasi untuk pembangkit arus laut. Berbagai penelitian telah dilakukan untuk meningkatkan performa turbin Darrieus yang pada umumnya memiliki performa efisiensi dan self-starting lebih rendah dibandingkan jenis turbin sumbu horisontal. Tujuan penelitian ini adalah untuk mengevaluasi performa turbin Darrieus yang ditinjau dari aspek efisiensi dan kemampuan self-starting. Skenario pengujian berupa penerapan bentuk foil dan blade swept angle (γ) pada desain turbin dipertimbangkan dalam penelitian ini. Pada evaluasi pengaruh bentuk foil, diterapkan foil NACA 634021 sebagai foil utama kemudian dibandingkan dengan foil lain seperti NACA 0018. Sedangkan evaluasi pengaruh blade swept angle, dipertimbangkan nilai γ = 30° agar menghasilkan turbin dengan bentuk V-shaped blade yang kemudian dibandingkan dengan turbin Straight blade dengan γ = 0°. Software QBlade digunakan untuk mensimulasikan turbin V-shaped blade selama kondisi kerja. Hasil simulasi menunjukkan bahwa turbin V-shaped blade yang berbasis foil NACA 634021 mampu mencapai efisiensi terbesar yaitu 0,425 dan memiliki self-starting yang baik pada cut-in speed arus laut sebesar 1,765 m/s. Selain itu, turbin ini juga mampu menghasilkan daya sebesar 27,64 kW pada kecepatan ratingnya dengan rata-rata peningkatan daya tiap 1 m/s arus laut sebesar 2,51 kW.

Keywords


Turbin V-shaped blade; foil NACA 634021; blade swept angle; efisiensi; self-starting

Full Text:

PDF

References


Ahmad, A., Loya, A., Ali, M., Iqbal, A., Baig, F. M., & Afzal, A. M. (2020). Roadside Vertical Axis Wind Turbine (VAWT): An Effective Evolutionary Design for Australian Highway Commuters with Minimum Dynamic Stall. Engineering, 12(09), 601–616.

Alaskari, M., Abdullah, O., & Majeed, M. H. (2019). Analysis of Wind Turbine Using QBlade Software. IOP Conference Series: Materials Science and Engineering, 518(3).

Aswad, I. A. H., Armono, H. D., Rahmawati, S., Ridlwan, A., & Ariefianto, R. M. (2021). Pemodelan Tinggi Gelombang Untuk Kajian Energi Gelombang Laut Di Perairan Barat Provinsi Lampung. Wave: Jurnal Ilmiah Teknologi Maritim, 15(2), 75–84.

Batista, N., Melicio, R., & Mendes, V. (2018). Darrieus-type vertical axis rotary-wings with a new design approach grounded in double-multiple streamtube performance prediction model. AIMS Energy, 6(5), 673–694.

Cai, C., Zuo, Z., Liu, S., & Wu, Y. (2015). Numerical investigations of hydrodynamic performance of hydrofoils with leading-edge protuberances. Advances in Mechanical Engineering, 7(7), 1–11.

Cho, S. Y., Choi, S. K., Kim, J. G., & Cho, C. H. (2018). An experimental study of the optimal design parameters of a wind power tower used to improve the performance of vertical axis wind turbines. Advances in Mechanical Engineering, 10(9), 1–10.

Delafin, P. L., Nishino, T., Wang, L., & Kolios, A. (2016). Effect of the number of blades and solidity on the performance of a vertical axis wind turbine. Journal of Physics: Conference Series, 753(2).

Dropkin, A., Custodio, D., Henoch, C. W., & Johari, H. (2012). Computation of flowfield around an airfoil with leading-edge protuberances. Journal of Aircraft, 49(5), 1345–1355.

Hammar, L., Eggertsen, L., Andersson, S., Ehnberg, J., Arvidsson, R., Gullström, M., & Molander, S. (2015). A probabilistic model for hydrokinetic turbine collision risks: Exploring impacts on fish. PLoS ONE, 10(3), 1–25.

Islam, M. R., Bin Bashar, L., & Rafi, N. S. (2019). Design and Simulation of A Small Wind Turbine Blade with Qblade and Validation with MATLAB. Proceedings of the International Conference on Electrical Information and Communication Technology, EICT 2019, 3, 20–22.

Johari, H., Henoch, C., Custodio, D., & Levshin, A. (2007). Effects of leading-edge protuberances on airfoil performance. AIAA Journal, 45(11), 2634–2642.

Johari, H., & Perez, S. (2011). Applications Of Hydrofoils With Leading Edge. Final Technical Report for Office of Naval Research contract N00014-08-1-1043. 818.

Krishnaraj, J., Ellappan, S., & Kumar, M. A. (2019). Additive Manufacturing of a Gorlov Helical Type Vertical Axis Wind Turbine. International Journal of Engineering and Advanced Technology, 9(2), 2639–2644.

Kulkarni, P. A., Hu, W., Dhoble, A. S., & Padole, P. M. (2017). Statistical wind prediction and fatigue analysis for horizontal-axis wind turbine composite material blade under dynamic loads. Advances in Mechanical Engineering, 9(9), 1–26.

Kumar, P. M., Sivalingam, K., Narasimalu, S., Lim, T.-C., Ramakrishna, S., & Wei, H. (2019). A Review on the Evolution of Darrieus Vertical Axis Wind Turbine: Small Wind Turbines. Journal of Power and Energy Engineering, 7(4), 27–44.

Li, Q., Maeda, T., Kamada, Y., Murata, J., Shimizu, K., Ogasawara, T., Nakai, A., & Kasuya, T. (2016). Effect of solidity on aerodynamic forces around straight-bladed vertical axis wind turbine by wind tunnel experiments (depending on number of blades). Renewable Energy, 96, 928–939.

Ma, J., Duan, Y., Zhao, M., Lv, W., Wang, J., Ke, Q. M., & Ren, Y. (2019). Effect of Airfoil Concavity on Wind Turbine Blade Performances. Shock and Vibration, 2019, 1–11.

Madi., Rahmawati, S., Mukhtasor., Satrio, D., & Yasim, A. (2021). Variation Number of Blades for Performance Enhancement for Vertical Axis Current Turbine in Low Water Velocity in Indonesia. Proceedings of the 7th International Seminar on Ocean and Coastal Engineering, Environmental and Natural Disaster Management, Isoceen 2019, 47–53.

Mahmuddin, F. (2017). Rotor Blade Performance Analysis with Blade Element Momentum Theory. Energy Procedia, 105, 1123–1129.

Mahmuddin, F., Klara, S., Sitepu, H., & Hariyanto, S. (2017). Airfoil Lift and Drag Extrapolation with Viterna and Montgomerie Methods. Energy Procedia, 105, 811–816.

Marsh, P., Ranmuthugala, D., Penesis, I., & Thomas, G. (2017). The influence of turbulence model and two and three-dimensional domain selection on the simulated performance characteristics of vertical axis tidal turbines. Renewable Energy, 105, 106-116.

Mazur, C., Hall, S., Hardy, J., & Workman, M. (2019). Technology is not a barrier: A survey of energy system technologies required for innovative electricity business models driving the low carbon energy revolution. Energies, 12(428), 1–13.

Mohamed, M. H. (2012). Performance investigation of H-rotor Darrieus turbine with new airfoil shapes. Energy, 47(1), 522–530.

Mosbahi, M., Ayadi, A., Chouaibi, Y., Driss, Z., & Tucciarelli, T. (2020). Experimental and numerical investigation of the leading edge sweep angle effect on the performance of a delta blades hydrokinetic turbine. Renewable Energy, 162, 1087–1103.

Muratoğlu, A., & Demir, M. S. (2019). Numerical Analyses of a Straight Bladed Vertical Axis Darrieus Wind Turbine: Verification of Dms Algorithm and Qblade Code. European Journal of Technic, 9(2), 195–208.

Okoli, C., Uhunmwangho, R., & Nwogu, H. (2017). A simulation model for tidal energy extraction in Nigeria using tidal current turbine. Proceedings of the 2017 IEEE PES-IAS PowerAfrica Conference: Harnessing Energy, Information and Communications Technology (ICT) for Affordable Electrification of Africa, PowerAfrica 2017, 500–505.

Paraschivoiu, I., Trifu, O., & Saeed, F. (2009). H-Darrieus wind turbine with blade pitch control. International Journal of Rotating Machinery, 2009. https://doi.org/10.1155/2009/505343

Qian, P., Feng, B., Liu, H., Tian, X., Si, Y., & Zhang, D. (2019). Review on configuration and control methods of tidal current turbines. Renewable and Sustainable Energy Reviews, 108, 125–139.

Raut, S., Srivash, S., Sanas, R., Sinnarkar, N., & Chaudhary, M. K. (2017). Simulation of micro wind turbine blade in Q-Blade. International Journal for Research in Applied Science and Engineering Technology, 5(4), 256–262.

Rawlings, G. W. (2008). Parametric Characterization of an Experimental Vertical Axis Hydro Turbine. Thesis. University of British Columbia, Vancouver, Canada.

Rishmany, J., Daaboul, M., Tawk, I., & Saba, N. (2017). Optimization of a Vertical Axis Wind Turbine Using FEA, Multibody Dynamics and Wind Tunnel Testing. Athens Journal of Technology and Engineering, 4(3), 1–21.

Sagharichi, A., Zamani, M., & Ghasemi, A. (2018). Effect of solidity on the performance of variable-pitch vertical axis wind turbine. Energy, 161, 753–775.

Satrio, D., Utama, I. K. A. P., & Mukhtasor. (2018). Numerical Investigation of Contra Rotating Vertical-Axis Tidal-Current Turbine. Journal of Marine Science and Application, 17(2), 208–215.

Satrio, D., Utama, I. K. A. P., & Mukhtasor. (2018). Performance Enhancement Effort for Vertical-Axis Tidal Current Turbine in Low Water Velocity. Proceedings of the 4th Asian Wave and Tidal Energy Conference (AWTEC), Taipei, Taiwan.

Shadman, M., Silva, C., Faller, D., Wu, Z., de Freitas Assad, L. P., Landau, L., Levi, C., & Estefen, S. F. (2019). Ocean renewable energy potential, technology, and deployments: A case study of Brazil. Energies, 12(19).

Su, J., Chen, Y., Han, Z., Zhou, D., Bao, Y., & Zhao, Y. (2020). Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines. Applied Energy, 260, 114326.

Syahputra, H., Prasetyawan, I. B., Ismunarti, D. H., & Adhitya, R. B. (2014). Kajian Potensi Arus Laut Sebagai Energi Pembangkit Listrik Di Selat Larantuka, Flores Timur, Nusa Tenggara Timur. Buletin Oseanografi Marina, 3(1), 1–8.

Tchakoua, P., Wamkeue, R., Ouhrouche, M., Tameghe, T. A., & Ekemb G. (2015). A New Approach for Modeling Darrieus-Type Vertical Axis Wind Turbine Rotors Using Electrical Equivalent Circuit Analogy: Basis of Theoretical Formulations and Model Development. Energies, 8, 10684–10717.

Timmer, W. A. (2008). Two-dimensional low-Reynolds number wind tunnel results for airfoil NACA 0018. Wind Engineering, 32(6), 525–537.

Utama, I. K. A. P., Satrio, D., Mukhtasor, M., Atlar, M., Shi, W., Hantoro, R., & Thomas, G. (2020). Numerical simulation of foil with leading-edge tubercle for vertical-axis tidal-current turbine. Journal of Mechanical Engineering and Sciences, 14(3), 6982–6992.

Wardhana, W., & Fridayana, E. N. (2018). Aerodynamic Performance Analysis of Vertical Axis Wind Turbine (VAWT) Darrieus Type H-Rotor using Computational Fluid Dynamics (CFD) Approach. Proceedings of the 3rd International Conference on Marine Technology, Senta 2018, 5–11.

Winslow, J., Otsuka, H., Govindarajan, B., & Chopra, I. (2018). Basic understanding of airfoil characteristics at low Reynolds numbers (104–105). Journal of Aircraft, 55(3), 1050-1061.

Yasim, A., Mukhtasor., Rahmawati, S., Widodo., & Madi. (2021). Numerical Modeling of Vertical Axis Hydro Turbine with Experimental Validation. Proceedings of the 7th International Seminar on Ocean and Coastal Engineering, Environmental and Natural Disaster Management, ISOCEEN 2019, 22–29.

Yirtici, O., Cengiz, K., Ozgen, S., & Tuncer, I. H. (2019). Aerodynamic validation studies on the performance analysis of iced wind turbine blades. Computers and Fluids, 192, 1–9.

Zahariea, D., Husaru, D. E., & Husaru, C. M. (2019). Aerodynamic and structural analysis of a small-scale horizontal axis wind turbine using QBlade. IOP Conference Series: Materials Science and Engineering, 595(1).

Zhang, D.-H., Ding, L., Huang, B., Chen, X.-M., & Liu, J.-T. (2019). Optimization Study on the Blade Profiles of A Horizontal Axis Tidal Turbine Based on BEM-CFD Model. China Ocean Engineering, 33(4), 436–445.




DOI: http://dx.doi.org/10.15578/jkn.v17i2.10842

Copyright (c) 2022 Rizki Mendung Ariefianto, Rini Nur Hasanah, Wijono Wijono


Creative Commons License

Copyright of Jurnal Kelautan Nasional (p-ISSN 1907-767Xe-ISSN 2615-4579)

Pusat Riset Kelautan
Badan Riset dan Sumberdaya Manusia Kelautan dan Perikanan
Kementerian Kelautan dan Perikanan

View My Stats

Index by