Kajian Kebisingan Lingkungan pada Akustik Tomografi Pesisir (ATP) untuk Prediksi Arus Permukaan Lokal

Teguh Arif Pianto, Harun Idham Akbar, Galih Prasetya Dinanta, Nurdiansyah Nurdiansyah, Nico Anatoly, Fanny Meliani, Bayu Sutejo

Abstract


Akustik Tomografi Pesisir (ATP) merupakan sebuah inovasi teknologi yang dapat digunakan untuk mendapatkan informasi tentang karakter fisik kelautan pada kurun waktu tertentu melalui media gelombang akustik. Pada sistem ATP, pembacaan transducer/sensor memiliki peran yang sangat penting, karena data dan informasi sangat bergantung pada kestabilan instrument oleh karenanya pemasangan alat menjadi sangat penting. disamping itu, langkah-langkah akusisi dan pengolahan data ATP wajib memiliki fundamental tentang fisika dan pemahaman tentang kelautan yang baik. Salah satu yang harus dipahami adalah karakter kebisingan lingkungan yang terekam sebagai Environmental Sound Noise (ESN). Data ini diperoleh dengan tujuan khusus untuk melihat karakter lingkungan dimana sensor ATP dipasang pada waktu rentang waktu tertentu, disamping itu data ini dapat digunakan juga sebagai instrument pemantauan perubahan kondisi  lingkungan secara near-realtime. Data pada penelitian ini menggunakan data ATP [j1]  yg di pasang disuar navigasi di wilayah perairan Senggigi, Lombok pada bulan Januari tahun 2021, dengan jumlah data 2724 data, yang terbagi kedalam empat (4) kuadran waktu, Analisa dengan menggunakan fourier transform (FFT) dan power spectral density (PSD) membuka informasi tentang kondisi arus permukaan. Berdasarkan hasil kajian dan analisis yang telah dilakukan didapat informasi pada saat kondisi hujan lebat sinyal ESN akan memiliki spike amplitudo dengan frekuensi yang yang rapat, kemudian sea-breeze setelah dilakukan signal processing berada pada nilai <12 Hz, surface wavepada 12-15 Hz dan underwater signal 15-32 Hz. Secara garis besar ATP dapat menjadi instrument untuk pengukuran kondisi perairan dan menjadi salah satu referensi untuk lalu lintas pelayaran.

Keywords


Akustik Tomografi Pesisir; Ambient Kebisingan; Kepadatan Daya Spektral; Sea-breeze; Transformasi Fourier

Full Text:

PDF

References


Adityawarman, Y., Kaneko, A., Taniguchi, N., Mutsuda, H., Komai, K., Guo, X., & Gohda, N. (2012). Tidal current measurement in the Kurushima Strait by the reciprocal sound transmission method. Acoustical Science and Technology, 33(1), 45–51. https://doi.org/10.1250/ast.33.45

Andrew, R. K., Howe, B. M., Mercer, J. A., & Dzieciuch, M. A. (2002). Ocean ambient sound: Comparing the 1960s with the 1990s for a receiver off the California coast. Acoustics Research Letters Online, 3(2), 65–70. https://doi.org/10.1121/1.1461915

Becken, B. A. (1960). Directional Distribution of Ambient Noise in the Ocean. The Journal of the Acoustical Society of America, 32(7), 920–920. https://doi.org/10.1121/1.1936463

Cato, D. H. (2012). A perspective on 30 years of progress in ambient noise: Source mechanisms and the characteristics of the sound field. 242–260. https://doi.org/10.1063/1.4765918

Chen, Y.-H., Taniguchi, N., Liu, C.-T., & Huang, C.-F. (2014). Acoustic current measurement using travel-time method in Bachimen Harbor, Taiwan. OCEANS 2014 - TAIPEI, 1–5. https://doi.org/10.1109/OCEANS-TAIPEI.2014.6964414

Comer, C. (1998). Exploring the Neural Code. Computational Neuroscience. The Quarterly Review of Biology, 73(4), 537–537. https://doi.org/10.1086/420509

Dahl, P. H., Miller, J. H., Cato, D. H., & Andrew, R. K. (2007). Underwater Ambient Noise. Acoustics Today, 3(1), 23. https://doi.org/10.1121/1.2961145

Frison, T. W., Abarbanel, H. D. I., Cembrola, J., & Neales, B. (1996). Chaos in ocean ambient ‘“noise.”’ The Journal of the Acoustical Society of America, 99(3), 1527–1539. https://doi.org/10.1121/1.414730

Gunson, J., & Symonds, G. (2014a). Spectral evolution of nearshore wave energy during a sea-breeze cycle. Journal of Physical Oceanography, 44(12), 3195–3208. https://doi.org/10.1175/JPO-D-13-0205.1

Gunson, J., & Symonds, G. (2014b). Spectral evolution of nearshore wave energy during a sea-breeze cycle. Journal of Physical Oceanography, 44(12), 3195–3208. https://doi.org/10.1175/JPO-D-13-0205.1

Hildebrand, J. (2009). Anthropogenic and natural sources of ambient noise in the ocean. Marine Ecology Progress Series, 395, 5–20. https://doi.org/10.3354/meps08353

Jayakrishnan, P. R., Sivaprasad, P., Nettukandy Chenoli, S., Babu, C. A., Samah, A. A., & Mohammedali, N. P. (2021). Sea breeze characteristics over a coastal station in peninsular Malaysia. Journal of Earth System Science, 130(3). https://doi.org/10.1007/s12040-021-01632-z

Kaneko, A. (2020). Quick Manual for Tsunami CAT (TCAT) (No. 1st). Aqua Environment Monitoring Limited Liability Partnership.

Kaneko, A., Ju, L., & Zhu, X. (2020). Coastal Acoustic Tomography (1st ed.). Elsevier. https://www.elsevier.com/books/coastal-acoustic-tomography/kaneko/978-0-12-818507-0

Liu, W., Zhu, X., Zhu, Z., Fan, X., Dong, M., & Zhang, Z. (2016). A coastal acoustic tomography experiment in the Qiongzhou Strait. 2016 IEEE/OES China Ocean Acoustics (COA), 1–6. https://doi.org/10.1109/COA.2016.7535688

Miller, S. L., & Childers, D. (2012). Random Processes. In Probability and Random Processes (pp. 335–382). Elsevier. https://doi.org/10.1016/B978-0-12-386981-4.50011-4

Miyazaki, K., Toda, T., Hayashi, T., & Takeda, K. (2019). Environmental sound processing and its applications. IEEJ Transactions on Electrical and Electronic Engineering, 14(3), 340–351. https://doi.org/10.1002/tee.22868

Munk, W., Worceser, P. F., & Wunsch, C. (1995). Ocean acoustic tomography (Vol. 433pp). Cambridge Univ. Press.

Munk, W., & Wunsch, C. (1979). Ocean acoustic tomography: a scheme for large scale monitoring. Deep Sea Research Part A. Oceanographic Research Papers, 26(2), 123–161. https://doi.org/10.1016/0198-0149(79)90073-6

Parajuli, S., Stenchikov, G., Ukhov, A., & Shevchenko, I. (2020). Interaction of Dust Aerosols with Land/Sea Breezes over the Eastern Coast of the Red Sea from LIDAR Data and High-resolution WRF-Chem Simulations. EGU- Atospheric Chemistry and Physics. https://doi.org/10.5194/acp-2020-444

Park, J.-H., & Kaneko, A. (2000). Assimilation of coastal acoustic tomography data into a barotropic ocean model. Geophysical Research Letters, 27(20), 3373–3376. https://doi.org/10.1029/2000GL011600

Philip, K., Brooks, M., & Hill, I. (2011). An Introduction to Geophysical Exploration (2nd ed.). Blackwell. https://www.wiley.com/en-us/An+Introduction+to+Geophysical+Exploration%2C+3rd+Edition-p-9780632049295

Reddy, T. V. R., Mehta, S. K., Ananthavel, A., Ali, S., Annamalai, V., & Rao, D. N. (2021). Seasonal characteristics of sea breeze and thermal internal boundary layer over Indian east coast region. Meteorology and Atmospheric Physics, 133(2), 217–232. https://doi.org/10.1007/s00703-020-00746-1

Reynolds, J. (2011). An Introduction to Applied and Environmental Geophysics (2nd ed.). John Wiley & Sons. https://www.wiley.com/en-us/An+Introduction+to+Applied+and+Environmental+Geophysics%2C+2nd+Edition-p-9780471485353

Ricker, D. W. (2003). Basic Signal Theory. In Echo Signal Processing (pp. 1–30). Springer US. https://doi.org/10.1007/978-1-4615-0312-5_1

Siddagangaiah, S., Li, Y., Guo, X., & Yang, K. (2015). On the dynamics of ocean ambient noise: Two decades later. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(10), 103117. https://doi.org/10.1063/1.4932561

Syamsudin, F., Taniguchi, N., Zhang, C., Hanifa, A. D., Li, G., Chen, M., Mutsuda, H., Zhu, Z., Zhu, X., Nagai, T., & Kaneko, A. (2019). Observing Internal Solitary Waves in the Lombok Strait by Coastal Acoustic Tomography. Geophysical Research Letters, 46(17–18), 10475–10483. https://doi.org/10.1029/2019GL084595

Taniguchi, N., Huang, C.-F., Kaneko, A., Liu, C.-T., Howe, B. M., Wang, Y.-H., Yang, Y., Lin, J., Zhu, X.-H., & Gohda, N. (2013). Measuring the Kuroshio Current with ocean acoustic tomography. The Journal of the Acoustical Society of America, 134(4), 3272–3281. https://doi.org/10.1121/1.4818842

Tegowski, J., Deane, G. B., Lisimenka, A., & Blondel, P. (2013). Spectral and statistical analyses of ambient noise. 070079. https://doi.org/10.1121/1.4790329

Viner, B., Noble, S., Qian, J. H., Werth, D., Gayes, P., Pietrafesa, L., & Bao, S. (2021). Frequency and characteristics of inland advecting sea breezes in the Southeast United States. Atmosphere, 12(8). https://doi.org/10.3390/atmos12080950

Wenz G.M. (1962). Acoustic Ambient Noise in the Ocean: Spectra and Sources. http://asadl.org/terms

Yamoaka, H., Kaneko, A., Jae-Hun Park, Hong Zheng, Gohda, N., Takano, T., Xiao-Hua Zhu, & Takasugi, Y. (2002). Coastal acoustic tomography system and its field application. IEEE Journal of Oceanic Engineering, 27(2), 283–295. https://doi.org/10.1109/JOE.2002.1002483

You, C., & Fung, J. C. H. (2019). Characteristics of the sea-breeze circulation in the pearl river delta region and its dynamical diagnosis. Journal of Applied Meteorology and Climatology, 58(4), 741–755. https://doi.org/10.1175/JAMC-D-18-0153.1

Yuan, R., Sun, J., Luo, T., & Wu, X. (2013). Scaling Characteristics of Developing Sea Breezes Simulated in a Water Tank. Boundary-Layer Meteorology, 148(3), 455–478. https://doi.org/10.1007/s10546-013-9824-z

Zhang, C., Kaneko, A., Zhu, X., & Gohda, N. (2015). Tomographic mapping of a coastal upwelling and the associated diurnal internal tides in Hiroshima Bay, Japan. Journal of Geophysical Research: Oceans, 120(6), 4288–4305. https://doi.org/10.1002/2014JC010676

Zhu, X.-H., Kaneko, A., Wu, Q., Zhang, C., Taniguchi, N., & Gohda, N. (2013). Mapping Tidal Current Structures in Zhitouyang Bay, China, Using Coastal Acoustic Tomography. IEEE Journal of Oceanic Engineering, 38(2), 285–296. https://doi.org/10.1109/JOE.2012.2223911

Zhu, Z.-N., Zhu, X.-H., & Guo, X. (2017). Coastal tomographic mapping of nonlinear tidal currents and residual currents. Continental Shelf Research, 143, 219–227. https://doi.org/10.1016/j.csr.2016.06.014




DOI: http://dx.doi.org/10.15578/jkn.v17i2.10996

Copyright (c) 2022 Teguh Arif Pianto, Harun Idham Akbar, Galih P Dinanta, Nurdiansyah Nurdiansyah, Nico Anatoly, Fanny Melaini, Bayu Sutejo


Creative Commons License

Copyright of Jurnal Kelautan Nasional (p-ISSN 1907-767Xe-ISSN 2615-4579)

Pusat Riset Kelautan
Badan Riset dan Sumberdaya Manusia Kelautan dan Perikanan
Kementerian Kelautan dan Perikanan

View My Stats

Index by