Pemanfaatan Metoda Machine Learning untuk Meningkatkan Akurasi Penentuan Potensi Lahan Tambak Garam di Kecamatan Kapetakan dan Suranenggala Kabupaten Cirebon
Abstract
Kabupaten Cirebon berada di sepanjang pantai utara laut jawa dan memiliki potensi pengembangan usaha tambak garam dengan garis pantai sepanjang +77,97 km. Kesiapan lahan garam cukup luas yaitu sebesar 1.557,75 Ha. Potensi ini sesuai dengan program Kementerian Kelautan dan Perikanan (KKP) yaitu Sentra Ekonomi Garam Rakyat (SEGAR). Penelitian ini bertujuan untuk mengidentifikasi potensi lahan garam di Kecamatan Kapetakan sebagai kecamatan yang diprioritaskan sebagai lokasi pengembangan SEGAR dan Kecamatan Suranenggala sebagai Kecamatan yang bersebelahan. Metode penelitian yang digunakan adalah Algoritma Machine Learning Random Forest dengan menggunakan aplikasi Google Earth Engine dan Citra Satelit Sentinel 2A. Hasil penelitian ini menunjukkan bahwa potensi lahan garam di Kecamatan Kapetakan diperkirakan sebesar 2.002,44 ha atau 30% dari luas total kecamatan dan potensi lahan garam di Kecamatan Suranenggala diperkirakan sebesar 417,02 ha atau 16% dari luas total kecamatan. Hal lain yang mendukung potensi pengembangan garam di Kecamatan Kapetakan adalah adanya sejumlah gudang garam yang dikelola swasta dan masyarakat, kecocokan kesesuaian tata ruang dengan RTRW Kabupaten Cirebon, rata-rata petak lahan kepemilikan petambak garam lebih besar dari 5 ha sehingga memudahkan proses konsolidasi lahan dan aspek sosial masyarakat yang mendukung program pemerintah daerah, seperti masyarakat yang partisipatif, dan komunikatif.
Keywords
Full Text:
PDFReferences
Bappelitbangda, & ITB. (2021). Kajian Pembentukan Kawasan Konservasi Mangrove dan Proyeksi Laju Pembentukan Akresi dan Abrasi di Pesisir Kabupaten Cirebon. Cirebon: Pemerintahan Kabupaten Cirebon.
Breiman, L. (2001). Machine Learning. Statistics Department, University of California, Berkeley, CA 94720: Kluwer Academic Publishers. Manufactured in The Netherlands.
Congalton, R. G. (1991). A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sensing. Environmental, 37, 35-46.
Daqiqil, I. (2021). Machine Learning, Teori, Studi Kasus dan Implementasi Menggunakan Python. Pekanbaru, Riau: Badan Penerbit Universitas Riau, UR PRESS, Indonesia.
Dimyati, M. (2022). Memahami Penginderaan Jauh Mandiri. Jakarta, Indonesia: UI Publishing, Universitas Indonesia.
Google Earth Engine Data Catalog. (2023, 2 11). Diambil kembali dari https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine. Planetary-scale geospatial analysis for everyone. Remote Sens. Environ, 202, 18-27.
Harahap, S. A., Purba, N. P., & Syamsuddin, M. L. (2019). Trend of coastline change for twenty years (1994-2014) in Cirebon, Indonesia. World Scientific News, 138(2), 79-92.
Heriati, A., & Husrin, S. (2017). Perubahan garis Pantai di Pesisir Cirebon berdasarkan Analisis Spasial. Reka Geomatika, 2017(2), 52-60.
Ho, T. K. (1995). Random Decision Forests. Proceedings of the 3rd International Conference on Document Analysis and Recognition, 278-282.
Kahaer, Y., & Tashpolat, N. (2019). Estimating Salt Concentrations Based on Optimized Spectral Indices in Soils with Regional Heterogeneity. Journal of Spectroscopy, 2019. https://doi.org/10.1155/2019/2402749
Kenedi, B. (2017). Analisis Perubahan Garis Pantai Menggunakan Citra Satelit Landsat di Pesisir Cirebon. Thesis. Bogor: Indonesia, Institut Pertanian Bogor.
Landis, J., & Koch, G. (1977). Measurement of Observer Agreement for Categorical Data. Biometrics, 33, 159-174.
Mahajan, G. R., Das, B., Gaikwad, B., Murgaonkar, D., Desai, A., Morajkar, S., Patel, K. P., & Kulkarni, R. M. (2021). Monitoring properties of the salt-affected soils by multivariate analysis of the visible and near-infrared hyperspectral data. CATENA, 198, 105041. https://doi.org/10.1016/J.CATENA.2020.105041
McBratney, A. B., Mendonça Santos, M. L., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1–2), 3–52. https://doi.org/10.1016/S0016-7061(03)00223-4
Mohammed, M., Khan, M. B., & Bashier, E. B. (2017). Machine Learning : Algorithms and Applications. Boca Raton: CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742.
Mutanga, O., & Kumar, L. (2019). Google Earth Engine Applications. Journal Remote Sensing, 11, 591.
Mitchell, T. M. (1997). Machine Learning. New York, Amerika Serikat: McGraw-Hill Science/Engineering/Math.
Nawar, S., Buddenbaum, H., Hill, J., & Kozak, J. (2014). Modeling and mapping of soil salinity with reflectance spectroscopy and landsat data using two quantitative methods (PLSR and MARS). Remote Sensing, 6(11), 10813–10834. https://doi.org/10.3390/RS61110813
Rani, A., Kumar, N., Sinha, N., Geosciences, J. K.-A. J. of, & 2022, (2022). Identification of salt-affected soils using remote sensing data through random forest technique: A case study from India. Springer, 15(5). https://doi.org/10.1007/s12517-022-09682-3
Vermeulen, D., & van Niekerk, A. (2016). Evaluation of a WorldView-2 image for soil salinity monitoring in a moderately affected irrigated area. Journal of Applied Remote Sensing, 10(2), 026025. https://doi.org/10.1117/1.JRS.10.026025
Wang, J., Ding, J., Yu, D., Ma, X., Zhang, Z., Ge, X., Teng, D., Li, X., Liang, J., Lizaga, I., Chen, X., Yuan, L., & Guo, Y. (2019). Capability of Sentinel-2 MSI data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur Lake region, Xinjiang, China. Geoderma, 353, 172–187. https://doi.org/10.1016/J.GEODERMA.2019.06.040
Wang, J., Ding, J., Yu, D., Teng, D., He, B., Chen, X., Ge, X., Zhang, Z., Wang, Y., Yang, X., Shi, T., & Su, F. (2020). Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI. Science of The Total Environment, 707, 136092. https://doi.org/10.1016/J.SCITOTENV.2019.136092
Wang, Z., Zhang, X., Zhang, F., Chan, N. weng, Kung, H. te, Liu, S., & Deng, L. (2020). Estimation of soil salt content using machine learning techniques based on remote-sensing fractional derivatives, a case study in the Ebinur Lake Wetland National Nature Reserve, Northwest China. Ecological Indicators, 119, 106869. https://doi.org/10.1016/J.ECOLIND.2020.106869
Wang, X., Zhang, F., Ding, J., Kung, H. te, Latif, A., & Johnson, V. C. (2018). Estimation of soil salt content (SSC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR), Northwest China, based on a Bootstrap-BP neural network model and optimal spectral indices. Science of The Total Environment, 615, 918–930. https://doi.org/10.1016/J.SCITOTENV.2017.10.025
Wang, N., Xue, J., Peng, J., Biswas, A., He, Y., Sensing, Z. S.-R., (2020). Integrating remote sensing and landscape characteristics to estimate soil salinity using machine learning methods: a case study from Southern Xinjiang, China. Mdpi.Com, 12, 4118. https://doi.org/10.3390/rs12244118
Wikipedia. (2023). Diambil kembali dari https://id.wikipedia.org/wiki/Random_forest
Wiweka, Parwati, E., Prayogo, T., Marini, Y., & Budiman, S. (2014). Uji Akurasi Training Sample untuk Klasifikasi Terawasi. Seminar Nasional IDEC, (hal. 559-566). Surakarta.
Xu, X., Wang, X., Yang, P., Meng, Y., Yu, D., & Li, C. (2023). Strategy for mapping soil salt contents during the bare soil period through a satellite image: Optimal calibration set combined with random forest. CATENA, 223, 106900. https://doi.org/10.1016/J.CATENA.2022.106900
Yahiaoui, I., Bradaï, A., Douaoui, A., & Abdennour, M. A. (2021). Performance of random forest and buffer analysis of Sentinel-2 data for modelling soil salinity in the Lower-Cheliff plain (Algeria). International Journal of Remote Sensing, 42(1), 128–151. https://doi.org/10.1080/01431161.2020.1823515
Zare, S., Abtahi, A., Fallah Shamsi, S. R., & Lagacherie, P. (2021). Combining laboratory measurements and proximal soil sensing data in digital soil mapping approaches. CATENA, 207, 105702. https://doi.org/10.1016/J.CATENA.2021.105702
DOI: http://dx.doi.org/10.15578/jkn.v19i1.12470
Copyright (c) 2024 Yusa Inderapermana
Copyright of Jurnal Kelautan Nasional (p-ISSN 1907-767X, e-ISSN 2615-4579)
Pusat Riset Kelautan
Badan Riset dan Sumberdaya Manusia Kelautan dan Perikanan
Kementerian Kelautan dan Perikanan
Index by