KARAKTERISTIK PROSES PENDANGKALAN GELOMBANG SOLITER INTERNAL DI SISI UTARA PERAIRAN LAUT FLORES

I Wayan Sumardana Eka Putra, Agus Saleh Atmadipoera, Henry Munandar Manik, Gentio Harsono, Adi Purwandana

Abstract


Kemunculan Gelombang Soliter Internal (GSI) di Laut Flores sering kali tertangkap oleh citra satelit dengan pusat pembangkitan yang berasal dari Selat Ombai. Namun, belum ada penelitian yang mengungkap secara detail nasib fenomena tersebut sesaat setelah dibangkitan. Di sini, karakteristik GSI tersebut diselidiki berdasarkan kemunculannya pada Synthetic Aperture Radar (SAR) dan citra kolom air (Water Coloum Imaging-WCI) peralatan akustik hidrografi (multibeams echosounders-MBES) saat kegiatan Ekspedisi Jala Citra (EJC) 3-2023 di Perairan Flores pada tanggal 25 April 2023. Tujuan dari penelitian ini adalah menganalisa dan mengungkapkan nasib perambatan GSI dari Selat Ombai hingga mengalami pendangkalan dan pemecahan di perairan Teluk Bone, Sulawesi. Metode dalam penelitian ini adalah menggunakan data hasil perekaman citra satelit dan peralatan akustik hidrografi (MBES). Hasil penelitian mengungkapkan bahwa Perairan Teluk Bone dikarekteristikan sebagai lokasi propagasi, pendangkalan dan pemecahan yang berasal dari pembangkitan GSI di Selat Ombai. Nilai amplitudo GSI yang mengalamai pendangkalan di Teluk Bone dikarakterisasi berubah menjadi 4-10 kali lebih kecil dari pusat pembangkitan GSI (Selat Ombai) akibat perubahan kedalaman dan memecah akibat menabrak dinding tebing/lereng topografi dasar laut dan diduga berubah menjadi boluses. Karakteritik massa air saat kenampakan GSI di Laut Flores tanggal 25 April 2023 di dominasi oleh massa air Samudera Pasifik yang terbawa oleh Arlindo dari Selat Makassar. Kemunculan GSI juga merubah struktur kolom air yaitu suhu, salinitas dan densitas yang merupakan faktor penting dalam propagasi akustik serta berimplikasi terhadap proses kegiatan maritim di Perairan Indonesia.

Keywords


internal solitary wave; Flores; Ombai; jala citra; SAR; MBES; maritime activities

References


Apel, J. R. (2004). Chapter 7 . Oceanic Internal Waves and Solitons. In SAR Marine User’s Manual (Issue September, pp. 189–206).

Apriansyah, & Atmadipoera, A. S. (2020). Seasonal variation of the Sunda Shelf Throughflow. IOP Conference Series: Earth and Environmental Science, 429(1). https://doi.org/10.1088/1755-1315/429/1/012019

Apriansyah, Atmadipoera, A. S., Jaya, I., Nugroho, D., & Akhir, M. F. (2022). Seasonal oceanographic changes and their implications for the abundance of small pelagic fishes in the southern South China Sea. Regional Studies in Marine Science, 54, 102499. https://doi.org/10.1016/j.rsma.2022.102499

Atmadipoera, A., Molcard, R., Madec, G., Wijffels, S., Sprintall, J., Koch-Larrouy, A., Jaya, I., & Supangat, A. (2009). Characteristics and variability of the Indonesian throughflow water at the outflow straits. Deep-Sea Research Part I: Oceanographic Research Papers, 56(11), 1942–1954. https://doi.org/10.1016/j.dsr.2009.06.004

Atmadipoera, A. S., Koch-Larrouy, A., Madec, G., Grelet, J., Baurand, F., Jaya, I., & Dadou, I. (2022). Part I: Hydrological properties within the eastern Indonesian throughflow region during the INDOMIX experiment. Deep-Sea Research Part I: Oceanographic Research Papers, 182, 103735. https://doi.org/10.1016/j.dsr.2022.103735

Brown, A. J. G., Lewis, M., Barton, B. I., Jeans, G., & Spall, S. A. (2019). Investigation of the modulation of the tidal stream resource by ocean currents through a complex tidal channel. Journal of Marine Science and Engineering, 7(10). https://doi.org/10.3390/jmse7100341

Chonnaniyah, Karang, I. W. G. A., & Osawa, T. (2021). Internal solitary waves propagation speed estimation in the northern-part of Lombok Strait observed by Sentinel-1 SAR and Himawari-8 images. IOP Conference Series: Earth and Environmental Science, 944(1). https://doi.org/10.1088/1755-1315/944/1/012042

Chonnaniyah, Osawa, T., As-syakur, A. R., Karang, I. W. G. A., & da Silva, J. C. B. (2023). On the distinction of seasonal internal solitary waves characteristics in the Lombok Strait based on multi-satellite data. International Journal of Remote Sensing, 00(00), 1–16. https://doi.org/10.1080/01431161.2023.2242592

Colbo, K., Ross, T., Brown, C., & Weber, T. (2014). A review of oceanographic applications of water column data from multibeam echosounders. Estuarine, Coastal and Shelf Science, 145, 41–56. https://doi.org/10.1016/j.ecss.2014.04.002

Dong, M. S., Tian, X. F., Yuan, Z., & Fei, T. (2016). Vibration Control of the Submerged Floating Tunnel under Combined effect of Internal Wave and Ocean Current. Procedia Engineering, 166, 160–170. https://doi.org/10.1016/j.proeng.2016.11.579

Drushka, K., Sprintall, J., Gille, S. T., & Brodjonegoro, I. (2010). Vertical structure of Kelvin waves in the Indonesian throughflow exit passages. Journal of Physical Oceanography, 40(9), 1965–1987. https://doi.org/10.1175/2010JPO4380.1

Egbert, G. D., & Erofeeva, S. Y. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2), 183–204. https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2

Fan, W., Song, H., Gong, Y., Sun, S., Zhang, K., Wu, D., Kuang, Y., & Yang, S. (2021). The shoaling mode-2 internal solitary waves in the Pacific coast of Central America investigated by marine seismic survey data. Continental Shelf Research, 212(November 2020). https://doi.org/10.1016/j.csr.2020.104318

Firdaus, R., Manik, H. M., Atmadipoera, A. S., Zuraida, R., & Purwanto, C. (2021). Pencitraan Struktur Halus Termohalin Menggunakan Seismik Refleksi Multikanal di Utara Laut Maluku. J. Ilmu Dan Teknologi Kelautan Tropis, 12(April), 151–162.

Gong, Y., Xie, J., Xu, J., Chen, Z., He, Y., & Cai, S. (2022). Oceanic internal solitary waves at the Indonesian submarine wreckage site. Acta Oceanologica Sinica, 41(3), 109–113. https://doi.org/10.1007/s13131-021-1893-0

Gordon, A. L. (2005). Oceanography of the Indonesian seas and their throughflow. Oceanography, 18(SPL.ISS. 4), 15–27. https://doi.org/10.5670/oceanog.2005.01

Gordon, A. L., Napitu, A., Huber, B. A., Gruenburg, L. K., Pujiana, K., Agustiadi, T., Kuswardani, A., Mbay, N., & Setiawan, A. (2019). Makassar Strait Throughflow Seasonal and Interannual Variability: An Overview. Journal of Geophysical Research: Oceans, 124(6), 3724–3736. https://doi.org/10.1029/2018JC014502

Gordon, A. L., Sprintall, J., Van Aken, H. M., Susanto, R. D., Wijffels, S., Molcard, R., Ffield, A., Pranowo, W., & Wirasantosa, S. (2010). The Indonesian throughflow during 2004-2006 as observed by the INSTANT program. Dynamics of Atmospheres and Oceans, 50(2), 115–128. https://doi.org/10.1016/j.dynatmoce.2009.12.002

Hermansyah, H., Atmadipoera, A. S., Prartono, T., Jaya, I., & Syamsudin, F. (2021). Percampuran Turbulen Di Laut Sulawesi Menggunakan Estimasi Thorpe Analisis. Jurnal Kelautan Tropis, 24(2), 211–222. https://doi.org/10.14710/jkt.v24i2.7352

Hung, J. J., Wang, Y. H., Fu, K. H., Lee, I. H., Tsai, S. S., Lee, C. Y., Lu, W. T., Shen, Y. J., & Lin, Y. H. (2021). Biogeochemical responses to internal-wave impacts in the continental margin off Dongsha Atoll in the Northern South China Sea. Progress in Oceanography, 199(September 2020). https://doi.org/10.1016/j.pocean.2021.102689

Iskandar, M. R., Jia, Y., Sasaki, H., Furue, R., Kida, S., Suga, T., & Richards, K. J. (2023). Effects of High-Frequency Flow Variability on the Pathways of the Indonesian Throughflow. Journal of Geophysical Research: Oceans, 128(5), 1–14. https://doi.org/10.1029/2022JC019610

Karang, I. W. G. A., Chonnaniyah, & Osawa, T. (2020). Internal solitary wave observations in the Flores Sea using the Himawari-8 geostationary satellite. International Journal of Remote Sensing, 41(15), 5726–5742. https://doi.org/10.1080/01431161.2019.1693079

Karang, I. W. G. A., Nishio, F., Mitnik, L., & Osawa, T. (2012). Spatial-Temporal Distribution and Characteristics of Internal Waves in the Lombok Strait Area Studied by Alos-Palsar Images. Earth Science Research, 1(2), 10–22. https://doi.org/10.5539/esr.v1n2p11

La Forgia, G., Adduce, C., Falcini, F., & Paola, C. (2019). Migrating Bedforms Generated by Solitary Waves. Geophysical Research Letters, 46(9), 4738–4746. https://doi.org/10.1029/2019GL082511

La Forgia, G., Droghei, R., Pierdomenico, M., Falco, P., Martorelli, E., Bergamasco, A., Bergamasco, A., & Falcini, F. (2023). Sediment resuspension due to internal solitary waves of elevation in the Messina Strait (Mediterranean Sea). Scientific Reports, 13(1), 1–9. https://doi.org/10.1038/s41598-023-33704-z

La Forgia, G., Tokyay, T., Adduce, C., & Constantinescu, G. (2020). Bed shear stress and sediment entrainment potential for breaking of internal solitary waves. Advances in Water Resources, 135(April 2019), 103475. https://doi.org/10.1016/j.advwatres.2019.103475

Ladroit, Y., Escobar-Flores, P. C., Schimel, A. C. G., & O’Driscoll, R. L. (2020). ESP3: An open-source software for the quantitative processing of hydro-acoustic data. SoftwareX, 12, 100581. https://doi.org/10.1016/j.softx.2020.100581

Lee, T., Fournier, S., Gordon, A. L., & Sprintall, J. (2019). Maritime Continent water cycle regulates low-latitude chokepoint of global ocean circulation. Nature Communications, 10(1), 1–13. https://doi.org/10.1038/s41467-019-10109-z

Lubis, M. Z., Surya, G., Anggraini, K., & Kausarian, H. (2019). Penerapan Teknologi Hidroakustik Di Bidang Ilmu Dan Teknologi Kelautan. Oseana, 42(2), 34–44. https://doi.org/10.14203/oseana.2017.vol.42no.2.45

Mitnik, L., & Dubina, V. (2009). Non-linear internal waves in the banda sea on satellite synthetic aperture radar and visible images. International Geoscience and Remote Sensing Symposium (IGARSS), 3(January), 2–4. https://doi.org/10.1109/IGARSS.2009.5417914

Nagai, T., & Hibiya, T. (2015). Internal tides and associated vertical mixing in the Indonesian Archipelago. Journal of Geophysical Research: Oceans, 120(5), 3373–3390. https://doi.org/10.1002/2014JC010592

Nugroho, D., Koch-Larrouy, A., Gaspar, P., Lyard, F., Reffray, G., & Tranchant, B. (2018). Modelling explicit tides in the Indonesian seas: An important process for surface sea water properties. Marine Pollution Bulletin, 131(June 2017), 7–18. https://doi.org/10.1016/j.marpolbul.2017.06.033

Piété, H., Marié, L., Marsset, B., Thomas, Y., & Gutscher, M. A. (2013). Seismic reflection imaging of shallow oceanographic structures. Journal of Geophysical Research: Oceans, 118(5), 2329–2344. https://doi.org/10.1002/jgrc.20156

Prasetya, I. A., Atmadipoera, A. S., Budhiman, S., & Nugroho, U. C. (2021). Internal solitary waves in the Northwest Sumatra Sea-Indonesia: From observation and modeling. IOP Conference Series: Earth and Environmental Science, 944(1), 0–17. https://doi.org/10.1088/1755-1315/944/1/012056

Purwandana, A., & Cuypers, Y. (2023). Characteristics of internal solitary waves in the Maluku Sea, Indonesia. Oceanologia, 65(2), 333–342. https://doi.org/10.1016/j.oceano.2022.07.008

Purwandana, A., Cuypers, Y., Bourgault, D., Bouruet-Aubertot, P., & Santoso, P. D. (2022). Fate of internal solitary wave and enhanced mixing in Manado Bay, North Sulawesi, Indonesia. Continental Shelf Research, 245(July), 104801. https://doi.org/10.1016/j.csr.2022.104801

Purwandana, A., Cuypers, Y., & Bouruet-Aubertot, P. (2021). Observation of internal tides, nonlinear internal waves and mixing in the Lombok Strait, Indonesia. Continental Shelf Research, 216(December 2020), 104358. https://doi.org/10.1016/j.csr.2021.104358

Purwandana, A., Cuypers, Y., Bouruet-Aubertot, P., Nagai, T., Hibiya, T., & Atmadipoera, A. S. (2020). Spatial structure of turbulent mixing inferred from historical CTD datasets in the Indonesian seas. Progress in Oceanography, 184(June 2019), 102312. https://doi.org/10.1016/j.pocean.2020.102312

Purwandana, A., Cuypers, Y., Surinati, D., Iskandar, M. R., & Bouruet-aubertot, P. (2023). Observed internal solitary waves in the northern Bali waters , Indonesia. Regional Studies in Marine Science, 57, 102764. https://doi.org/10.1016/j.rsma.2022.102764

Purwandana, A., Putra, I. W. S. E., & Cuypers, Y. (2024a). SOLITON 2.0: Karakterisasi Gelombang Internal Soliter dari Citra SAR (Patent No. 000572523). In Directorate General of Intellectual Property (DJKI) Ministry Of Law And Human Rights Republic Of Indonesia (No. 000572523).

Purwandana, A., Putra, I. W. S. E., & Cuypers, Y. (2024b). Soliton 2.0 Karakterisasi Gelomabang Internal Soliter dari Citra SAR (1st ed.). https://linktr.ee/adipurwandana

Pushidrosal (Naval Hydro-Oceanography Center). (2022). Publikasi Hasil Penelitian Ekpedisi Jala Citra (EJC) 2-2022 “Banda.” https://jalacitra.pushidrosal.id/publikasi/

Pushidrosal (Naval Hydro-Oceanography Center). (2023). Live Sarasehan Hasil Ekspedisi Jala Citra 3 “Flores” – internasional webinar. Indonesian Navy. https://www.youtube.com/watch?v=W4OxknPyheE

Putra, I. W. S. E., Atmadipoera, A. S., Manik, H. M., Harsono, G., Purwandana, A., Keulana, M. R., Handoko, D., Setiyadi, J., & Pranowo, W. S. (2022). Teleconnection Among The Oil Gas Industry and Underwater Defense Strategies to Improve Indonesian Sea Defense. Chrart Datum, 8(2), 95–106. https://doi.org/https://doi.org/10.37875/chartdatum.v8i2.206

Situmorang, E., Manik, H. M., & Atmadipoera, A. S. (2022). Deteksi dan Kuantifikasi Internal Wave Menggunakan Instrumen Broadband Echosounder SIMRAD EK80 di Perairan Padang Bay Bali. Positron, 12(2), 132. https://doi.org/10.26418/positron.v12i2.51854

Song, H., Chen, J., Pinheiro, L. M., Ruddick, B., Fan, W., Gong, Y., & Zhang, K. (2021). Progress and prospects of seismic oceanography. In Deep-Sea Research Part I: Oceanographic Research Papers (Vol. 177). Elsevier Ltd. https://doi.org/10.1016/j.dsr.2021.103631

Sprintall, J., Gordon, A. L., Wijffels, S. E., Feng, M., Hu, S., Koch-Larrouy, A., Phillips, H., Nugroho, D., Napitu, A., Pujiana, K., Dwi Susanto, R., Sloyan, B., Yuan, D., Riama, N. F., Siswanto, S., Kuswardani, A., Arifin, Z., Wahyudi, A. J., Zhou, H., … Setiawan, A. (2019). Detecting change in the Indonesian seas. Frontiers in Marine Science, 6(JUN). https://doi.org/10.3389/fmars.2019.00257

Stepanyants, Y. (2021). How internal waves could lead to wreck American and Indonesian submarines? 39(3), 469–480. http://www.riss.kr/link?id=A107730980

Suharyo, O. S., Adrianto, D., & Hidayah, Z. (2018). Pengaruh Pergerakan Massa Air Dan Distribusi Parameter Temperatur, Salinitas Dan Kecepatan Suara Pada Komunikasi Kapal Selam. Jurnal Kelautan: Indonesian Journal of Marine Science and Technology, 11(2), 104. https://doi.org/10.21107/jk.v11i2.4521

Sun, L., Zhang, J., & Meng, J. (2021). Study on the propagation velocity of internal solitary waves in the Andaman Sea using Terra/Aqua-MODIS remote sensing images. Journal of Oceanology and Limnology, 39(6), 2195–2208. https://doi.org/10.1007/s00343-020-0280-6

Susanto, R. D., Ffield, A., Gordon, A. L., & Adi, T. R. (2012). Variability of Indonesian throughflow within Makassar Strait, 2004-2009. Journal of Geophysical Research: Oceans, 117(9), 2004–2009. https://doi.org/10.1029/2012JC008096

Susanto, R. D., Mitnik, L., & Zheng, Q. (2005). Ocean internal waves observed in the Lombok Strait. Oceanography, 18(SPL.ISS. 4), 81–87. https://doi.org/10.5670/oceanog.2005.08

Susanto, R. D., Wei, Z., Adi, T. R., Zheng, Q., Fang, G., Fan, B., Supangat, A., Agustiadi, T., Li, S., Trenggono, M., & Setiawan., A. (2016). Oceanography 29(2):264–272,. Oceanography Society, 264–272. https://doi.org/http://dx.doi.org/10.5670/oceanog.2016.31

Syamsudin, F., Taniguchi, N., Zhang, C., Hanifa, A. D., Li, G., Chen, M., Mutsuda, H., Zhu, Z. N., Zhu, X. H., Nagai, T., & Kaneko, A. (2019). Observing Internal Solitary Waves in the Lombok Strait by Coastal Acoustic Tomography. Geophysical Research Letters, 46(17–18), 10475–10483. https://doi.org/10.1029/2019GL084595

van Aken, H. M., Brodjonegoro, I. S., & Jaya, I. (2009). The deep-water motion through the Lifamatola Passage and its contribution to the Indonesian throughflow. Deep-Sea Research Part I: Oceanographic Research Papers, 56(8), 1203–1216. https://doi.org/10.1016/j.dsr.2009.02.001

Wang, T., Huang, X., Zhao, W., Zheng, S., Yang, Y., & Tian, J. (2022). Internal Solitary Wave Activities near the Indonesian Submarine Wreck Site Inferred from Satellite Images. Journal of Marine Science and Engineering, 10(2). https://doi.org/10.3390/jmse10020197

Wattimena, M. C., Atmadipoera, A. S., Purba, M., Nurjaya, I. W., & Syamsudin, F. (2018). Indonesian Throughflow (ITF) variability in Halmahera Sea and its coherency with New Guinea Coastal Current. IOP Conference Series: Earth and Environmental Science, 176(1). https://doi.org/10.1088/1755-1315/176/1/012011

Zhang, Y., Hong, M., Zhang, Y., Zhang, X., Cai, J., Xu, T., & Guo, Z. (2023). Characteristics of Internal Solitary Waves in the Timor Sea Observed by SAR Satellite. Remote Sensing, 15(11). https://doi.org/10.3390/rs15112878

Zhang, Y., Zang, Z., Yi, Q., Liang, D., Liu, Z., & Li, G. (2019). Simulation of Migration of Sand Waves Under Currents Inducted by Internal Waves. In N. T. Viet, D. Xiping, & T. T. Tung (Eds.), Proceedings of the 10th International Conference on Asian and Pacific Coasts (APAC 2019) Hanoi, Vietnam, September 25-28, 2019 (pp. 457–462). Springer. https://doi.org/https://doi.org/10.1007/978-981-15-0291-0

Zhao, X., Xu, Z., Feng, M., Li, Q., Zhang, P., You, J., Gao, S., & Yin, B. (2021). Satellite investigation of semidiurnal internal tides in the sulu-sulawesi seas. Remote Sensing, 13(13), 1–20. https://doi.org/10.3390/rs13132530




DOI: http://dx.doi.org/10.15578/jkn.v19i2.14049

Copyright (c) 2024 I Wayan Sumardana Eka Putra, I Wayan Sumardana Eka Putra, Agus Saleh Atmadipoera, Henry Munandar Manik, Gentio Harsono, Adi Purwandana


Creative Commons License

Copyright of Jurnal Kelautan Nasional (p-ISSN 1907-767Xe-ISSN 2615-4579)

Pusat Riset Kelautan
Badan Riset dan Sumberdaya Manusia Kelautan dan Perikanan
Kementerian Kelautan dan Perikanan

View My Stats

Index by