PENGEMBANGAN INSTRUMEN LAGRANGIAN GPS DRIFTER COMBINED (GERNED) UNTUK OBSERVASI LAUT

Noir Primadona Purba, Syawaludin A. Harahap, Donny J. Prihadi, Ibnu Faizal, Putri G. Mulyani, Candra A. Fitriadi, Isnan F. Pangestu, Prio D. Atmoko, Adam Alfath, Joshua T. Sitio

Abstract


Instrumen Lagrangian telah banyak digunakan untuk pengumpulan data arus laut dan observasi di perairan Indonesia membutuhkan data yang langsung dapat diketahui (real time). Kajian ini menekankan pada pengembangan GPS Drifter Combined (GERNED) dari sisi desain dan sistem pengukuran. Hasil pengujian menunjukkan bahwa GERNED dapat digunakan di danau, perairan dangkal, dan laut terbuka. Konstruksi terdiri dari bahan akrilik, Polyethylene, dan aluminium. Desain konstruksi terdiri dari bagian atas sebagai penutup dan juga tempat sensor udara dan lampu indikator, bagian tengah yang merupakan pusat mikro-kontroller, catu daya, sensor-sensor, penyimpanan data manual dan pengiriman data via satelit. Biaya yang dibutuhkan untuk membuat alat ini sekitar 15.000.000 (lima belas juta rupiah) dengan biaya terbesar adalah kontrol pengiriman data. Pada bagian bawah merupakan baling-baling statik. Pengujian yang dilakukan di laboratorium untuk melihat posisi lokasi sudah menunjukkan data yang sama dengan data lapangan sedangkan untuk pengujian lapangan yang dilakukan di pulau Untung Jawa menunjukkan bahwa arah dan pergerakan GERNED sama dengan pergerakan float tracking umumnya.


Keywords


Instrumen, Lagrangian, GPS Drifter, GERNED, Observasi laut

Full Text:

PDF

References


Austin, J., dan Atkinson, S. 2004. The Design and Testing of Small, Low-cost GPS-tracked. Journal Estuaries, vol. 27, No. 6, p 1026-1029

Cetina-Heredia, P., Roughan, M., van Sebille, E., Feng, M., and Coleman, M. A. 2015. Strengthened currents override the effect of warming on lobster larval dispersal & survival, Glob. Change Biol., 21, 4377–4386.

Cowen, R. K., Paris, C. B., and Srinivasan, A. 2006. Scaling of connectivity in marine populations, Science, 311, 522–527.

Davis, R. E. 1991. Lagrangian ocean studies. Annu. Rev. Fluid Mech. 23, 43–64.

Fitriadi, C.A., Dhahiyat Y., Purba, N.P., Harahap, S.A., Prihadi, D.J. 2016. Planula Recruitment Based on Oceanography Condition in Rakit Islands-Indonesia. Prooc. Biodiversitas, Jatinangor-Indonesia

George, R. and J. Largier. 1996. Description and performance of nescale drifters for coastal and estuarine studies. J. Atmos. Ocean. Technology, 13, 1322-1326.

Green, A.N. and Cooper, J.A.G. 2014. Lagrangian Drifter Approach. Proceedings 13th International Coastal Symposium (Durban, South Africa), Journal of Coastal Research, Special Issue No. 70, pp. 029-034, ISSN 0749-0208.

Griffa, A., D. Kirwan, A. Mariano, T. Ozgokmen, T. Rossby. 2007. Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics. Cambridge University, 1-38.

Huhn, F., von Kameke, A., Allen-Perkins, S., Montero, P., Venancio, A. and Pérez-Muñuzuri, V. 2012. Horizontal Lagrangian transport in a tidal-driven estuary—Transport barriers attached to prominent coastal boundaries. Continental Shelf Research, 39–40, 1-13.

Jannssen, M., and de Koning, R. 2015. Feasibility of Velocity Measurements by a Drifer in the Yangon River. Delft University of Technology, 1-9.

Jönsson, B.F., Döös, K., Myrberg, K. and Lundberg, P.A. 2011. A Lagrangian-trajectory study of a gradually mixed estuary. Continental Shelf Research, 31, 1811-1817.

Lange M., and E. van Sebille. 2017. Parcels v0.9: prototyping a Lagrangian ocean analysis framework for the petascale age. Geosci. Model Dev., 10, 4175–4186, 2017, https://doi.org/10.5194/gmd-10-4175-2017

Lebreton, L. C. M., Greer, S. D., and Borerro, J. C. 2012. Numerical modeling of floating debris in the world's oceans, Mar. Pollut. Bull., 64, 653–661.

Mullarney, J.C and Henderson, S.M. 2013. A Novel drifter designed for use with a mounted Acoustic Doppler Current Profiler in shallow environments. Limnol. Oceanography: Methods 11, 438-449. DOI 10.4319/lom.2013.11.438

Perez, J.C., Bonner, J., Kelly, F.J., Fuller, C. 2003. Development of a Cheap, GPS-Based, Radio-Tracked, Surface Drifter for Closed Shallow-Water Bays. Proc. Of the IEEE/OES Seventh Working Conference on Current Measurement Technology

PRTK [Pusat Riset Teknologi Kelautan]. 2008. Kaji Terap Sistem Observasi Lingkungan Laut Terpadu. Laporan. 223 Hal.

Qin, X., Menviel, L., Sen Gupta, A., and van Sebille, E. 2016. Iron sources and pathways into the Pacific Equatorial Undercurrent, Geophys. Res. Lett., 43, 9843–9851, https://doi.org/10.1002/2016GL070501

Song, T., T. Rossby, and E. Carter, Jr. 1995. Lagrangian studies of fluid exchange between the Gulf Stream and surrounding waters. J. Phys. Oceanogr., 25, 46–63.

Spencer, D., Lemckert, C.J., Yu, Y., Gustafson, J., Lee, S.Y., Zhang, H. 2014. Quantifying Dispersion in an Estuary: A Lagrangian Drifter Approach. Proceedings 13th International Coastal Symposium (Durban, South Africa), Journal of Coastal Research, Special Issue No. 70, pp. 029-034, ISSN 0749-0208.

Stommel, H. 1949. Horizontal difusion due to oceanic turbulence. J. Mar. Res., 8, 199-255

Swallow, J. 1955. A neutral-buoyancy float for measuring deep currents. Deep Sea Res., 3, 74-81.

Yeung, P.K., and Pope, S.B. 1988. “An Algorithm for Tracking Fluid Particles in Numerical Simulations of Homogeneous Turbulence,” Journal of Computational Physics vol. 79, 373-416.




DOI: http://dx.doi.org/10.15578/jkn.v12i3.6323

Copyright (c) 2017 Jurnal Kelautan Nasional


Creative Commons License

Copyright of Jurnal Kelautan Nasional (p-ISSN 1907-767Xe-ISSN 2615-4579)

Pusat Riset Kelautan
Badan Riset dan Sumberdaya Manusia Kelautan dan Perikanan
Kementerian Kelautan dan Perikanan

View My Stats

Index by