PENGARUH ASPEK TEKNIS-OPERASIONAL PADA JEJAK KARBON KAPAL PERIKANAN HUHATE INDONESIA
Abstract
Meningkatnya permintaan pasar dunia terhadap komoditas tuna cakalang tongkol (TCT) mendorong semakin intensifnya penggunaan alat tangkap huhate di perairan timur Indonesia. Sementara proses sertifikasi Marine Stewardship Council (MSC) sedang berlangsung, trade barrier terkait jejak karbon produk perikanan yang dikenal ramah lingkungan dan memiliki dampak sosial ekonomi yang tinggi ini akan menjadi salah satu faktor yang akan diperhatikan pasar. Dewasa ini data jejak karbon perikanan belum tersedia. Untuk itu dilakukan penelitian yang bertujuan untuk mengestimasi jejak karbon kegiatan penangkapan (cradle to gate) armada huhate di Sorong, Bitung, Kendari, Ambon dan Larantuka. Penelitian yang mengacu pada British Standard Institute PAS 2050-2:2012, dilaksanakan pada Juni-Desember 2015. Data diperoleh melalui kuesioner dan wawancara nakhoda dan kepala kamar mesin. Hasil penelitian menunjukkan bahwa armada huhate di Larantuka memiliki jejak karbon terendah (0,59 ton CO2eq/ton ikan). Sedangkan armada huhate di Sorong, Bitung dan Kendari menghasilkan jejak karbon yang berkisar antara 0,61-1,14 ton CO2eq/ton ikan. Secara umum jejak karbon armada tersebut lebih dipengaruhi oleh aspek operasional dari pada aspek teknis kapal. Pembandingan hasil studi jejak karbon sangat perlu dengan memperhatikan kesetaraan batasan sistem produksi (system boundary) yang digunakan.
The increase of world market demand for tuna, skipjack, and kawa-kawa commodities has been escalating the use of pole and line vessels in eastern Indonesian waters. Meanwhile the Marine Stewardship Council (MSC) certification process is ongoing, trade barriers related to carbon footprint of the fisheries that are known to be environmentally friendly and have a high socio-economic impact are massively raised. Nowadays,carbon footprint data of this fishery are not available yet. Therefore research was intended on June-December 2015 to estimate carbon footprint of this fishery, located in main TCT fishing ports such as Sorong, Bitung, Kendari, Ambon, and Larantuka. The research conducted is based on the British Standard Institute PAS 2050-2: 2012. Data were obtained through in-depth interviewing the captains and engine officers. The results show that pole and line fleet based in Larantuka had the lowest carbon footprint of 0.59 tons CO2eq/ton, while the other fleets have produced carbon footprint ranging from 0.61 to 1.14 tons of CO2eq/ton. In general, carbon footprint of this fleet is more likely influenced by the operational aspects rather than the technical ones. Comparisons of the results of carbon footprint studies should be carefully considered the system boundary used by existing fisheries.
Keywords
Full Text:
PDFReferences
Akbar, M.A., Suryanto., & Triharyuni, S. (2016). Analisis perikanan huhate di perairan Larantuka, Flores. J. Lit. Perikan. Ind. 22 (2), 115-122. http://dx.doi.org/10.15578/jppi.22.2.2016.115-122.
Baldwin, S. (2006). Carbon foot print of electricity generation. https://www.geni.org/globalenergy/library/technical-articles/carbon-capture/parliamentary-office-of-science-and-technology/carbon-footprint-of-electricity-generation/file_9270.pdf.
BSI PAS 2050-2 (2012). Assessment of life cycle greenhouse gas emission. A supplementary requirement for the application of PAS 2050:2011 to seafood and other aquatic food product. The British Standards Institution. 48 p.
Davies. T.K., Mees. C.C., & Gulland. E.J.M. (2014). The past, present and future use of drifting fish aggregating devices (FADs) in the Indian Ocean. Marine Policy 45, 163–170. https://doi.org/10.1371/journal.pone.0210435.
ESDM (Kementerian Energi dan Sumber Daya Mineral), (2014). Direktorat Jenderal Ketenagalistrikan. Faktor Emisi Gas Rumah Kaca System Interkoneksi 2014.
Galland, G., Rogers, A., & Nickson, A. (2016). Netting billions: A Global Valuation of Tuna. A report from the PEW Charitable Trust. May. 28 p.
Gillett, R. (2009). Fisheries in the Economies of the Pacific Island Countries and Territories. Pacific Studies Series. Asian Development Bank. 531 p.
Gillett, R. (2011). The promotion of pole-and-line tuna fishing in the Pacific Islands: Emerging issues and lessons learned. ISSF Technical Report 2011-08. International Seafood Sustainability Foundation. 46 p.
Gould, O., & Colwill, J. (2014). A framework for material flow assessment in manufacturing (p. 398-409). Sustainable Design and Manufacturing.
Hair, J.E., Black, W.C., Babin B.J., & Anderson, R. E. (2010). Multivariate data analysis: A global perspective (7th ed.). New Jersey: Pearson.
Hospido, A., & Tyedmers, P. (2005). Life cycle environmental impacts of Spanish tuna fisheries. Fisheries Research, 76(2), 174-186. DOI:10.1016/j.fishres.2005.05.016.
Howgate, E., & Leadbitter, D. (2016). International markets for pole and line tuna: Opportunities and Challenges. Info fish International. 8-11.
Hutama, D.P., Mudzakir, A.K., & Hapsari, T.D. (2017). Faktor – faktor yang mempengaruhi jumlah produksi unit penangkapan huhate (Pole And Line) di pelabuhan perikanan pantai (PPP) Labuhan Lombok. Journal of Fisheries Resources Utilization Management and Technology 6 (4), 64-73. http://www.ejournal-s1.undip.ac.id/index.php/jfrumt.
IPCC. (2014). Climate change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri, and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 p.
KLH (Kementerian Lingkungan Hidup). (2012). Pedoman Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional. Buku II - Volume 1 Metodologi Penghitungan Tingkat Emisi Gas Rumah Kaca Kegiatan Pengadaan dan Penggunaan Energi. 152 p.
Madin, E.M.P., & Macreadie, P.I. (2015). Incorporating carbon footprints into seafood sustainability certification and eco-labels. Marine Policy. 57, 178–181. https://doi.org/10.1016/j.marpol.2015.03.009.
MDPI. (2016). Annual report (p. 46). Yayasan Masyarakat dan Perikanan Indonesia. Jakarta.
Marcille, J., Boely, T., Umar, M., Merta, G.S., Sadhotomo, B., & Uktolseja, J.C.B. (1984). Tuna fishing in Indonesia. Institut Francais de Recherche Scientifique pour le Developpement en Cooperation. De l’ORSTOM. 88 p.
Miller, K.I., Adam, M.S., & Baske, A. (2017). Rates of fuel consumption in the maldivian pole-and-line tuna fishery. International Pole & Line Foundation, London and Marine Research Centre, Maldives. 39 pages.
Monintja D. R., & Mathews, C.P. (1999). The skipjack fishery in Eastern Indonesia: distinguishing the effects of increasing effort and deploying rumpon (FADs) on the stock. Scientific papers from the International Seminar on Fish Aggregating Device, 15-19 October 1999, Martinique, France. P. 435-448.
MSC (Marine Stewardship Council). (2010). Fishery standard: Principles and criteria for sustainable fishing. 8 p.
Parker, R., & Tyedmers, P. (2014). Fuel consumption of global fishing fleets: current understanding and knowledge gaps. Fish and Fisheries. 16 (4), 684–696. https://doi.org/10.1111/faf.12087.
Parker. R.W.R., Hartmann. K., Green. B.S., Gardner. C., & Watson, R.A. (2015). Environmental and economic dimensions of fuel use in Australian fisheries. J. of Clean. Prod. 87. 78-86. https://doi.org/10.1016/j.jclepro.2014.09.081.
PUSDATIN (Pusat Data, Statistik dan Informasi). (2018). Dashboard Produksi Perikanan 2017. http://sidatik.kkp.go.id/ diunduh 11 April 2019.
Schmidt, J. (2014). The importance of system boundaries for LCA on large material flows of vegetable oils. Text version of poster presented to the Fourth World SETAC Congress, 14-18 November. Portland, Oregon, USA. 34 p.
Seafood Watch. (2017). www.seafoodwatch.org/seafood recommendations/groups/ tuna. Diunduh 8 Maret 2017.
Suryanto & Wudianto. (2017). Model estimasi konsumsi bahan bakar kapal ikan huhate dan rawai tuna. J. Lit. Perikan. Ind. 23(2): 99-110. http://dx.doi.org/10.15578/jppi.23.2.2017.99-110.
Suryanto, Adi, T. R. Watupongoh, N. N. J. Nugroho, D., & Akbar, M. A. (2016). Kebijakan peningkatan efisiensi energi usaha penangkapan tuna cakalang tongkol (TCT) di Indonesia Timur. J. Kebijak. Perik. Ind. Vol. 8 No. 2. 65-76. http://dx.doi.org/10.15578/jkpi.8.2.2016.65-76.
Sutrisno, Sompie, M.S., & Polli, J.F. (2017). Kajian aspek teknis unit penangkapan kapal pole and line yang berpangkalan di Pelabuhan Perikanan Samudera Bitung. Jurnal Ilmu dan Teknologi Perikanan Tangkap, 2(6), 223-230.
Statsoft. (2019). STATISTICA Features Overview. Diperoleh 18 September 2019, dari http://www.statsoft.com/Products/STATISTICA-Features.
Thrane, M. Ziegler, F., & Sonesson, U. (2008). Eco-labelling of wild-caught seafood products. J. of Cl. Prod. 17: 416 – 423. https://doi.org/10.1016/j.jclepro.2008.08.007.
Tyedmers, P. (2004). Fisheries and energy use. Encyclopedia of Energy, 2, 683-693.
Tyedmers, P., & Parker, R. (2012). Fuel Consumption and Greenhouse Gas Emissions from Global Tuna Fisheries: A preliminary assessment. International Seafood Sustainability Foundation (ISSF). Technical Report 2012-03. 35 p.
Uyanto, S.S. (2006). Pedoman analisis data dengan SPSS. Graha Ilmu-Yogyakarta, 239p Watanabe, H., & Okubo, M. (1989). Energy input in marine fisheries of Japan. Bull. Jap. Soc. Sci. Fish. 53(9), 1525–1531 in P. Tyedmers (2004). Fisheries and Energy Use. Encyclopedia of Energy, Volume 2, 683-693.
Widodo, A.A., Wudianto., & Satria, F. (2016). Current status of the pole-and-line fishery in Eastern Part of Indonesia. Ind. Fish. Res. J. 22(1), 43-52. http://dx.doi.org/10.15578/ifrj.22.1.2016.43-52.
Ziegler, F., Hornborg, S. Green, B.S. Eigaard, O.R. Farmery, A.K. Hammar, L. Hartmann, K. Molander, S. Parker, R.W.R Hognes, E.S. Rowe, I.V., & Smith, A.D.M. (2016). Expanding the concept of sustainable seafood using Life Cycle Assessment. Fish and Fisheries, 17(4), 17. https://doi.org/10.1111/faf.12159.
DOI: http://dx.doi.org/10.15578/jppi.25.2.2019.103-115
Jurnal Penelitian Perikanan Indonesia is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.