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ABSTRACT 

The increasing occurrence of antibiotic-resistant bacteria is one of the major challenges 
currently faced by the aquaculture sector. Ineffective applications of antibiotics to treat 
bacterial diseases, leading to the need for alternative strategies to address the problem. 
The antivirulence approach is a highly promising strategy that aims to stop pathogenic 
bacteria from causing harm to the host by disrupting their virulence mechanisms. 
This approach involves understanding the mechanisms of bacterial pathogenicity 
that can be developed into new therapeutic methods. There have been numerous 
advancements in combating bacterial infections, such as disrupting host-pathogen 
communication and inhibiting quorum sensing (QS). Antivirulence therapy offers a 
significant advantage as it specifically targets bacterial virulence without imposing 
excessive pressure on bacterial growth, reducing the risk of resistance development. 
This review outlines the limitations of antibiotic use and presents current insights 
into bacterial pathogenicity mechanisms and antivirulence strategies in aquaculture. 
It particularly highlights the impact of host-pathogen signaling via catecholamines, 
stress hormones, and QS mechanisms in certain aquaculture-pathogenic bacteria. The 
influence of host stress hormones on pathogen growth and virulence is noteworthy. 
Quorum sensing (QS) is known to regulate the expression of certain virulence genes in 
response to bacterial density by releasing and detecting a small signal molecule called 
autoinducers. This review further explains various strategies to interfere with QS 
mechanisms, including inhibiting signal molecule biosynthesis, using QS antagonists, 
chemical inactivation, or biodegradation of QS signals. These promising strategies 
have been considered as the first step and proof of concept of antivirulence strategies 
to prevent disease outbreaks in aquaculture.  

KEYWORDS: antibiotic resistant; quorum quenching; quorum sensing; vibriosis; 
virulence factors

ABSTRAK: Reviu Mini Strategi Antivirulensi Berkelanjutan untuk Akuakultur 

Meningkatnya jumlah bakteri yang resisten terhadap antibiotik merupakan salah satu 
tantangan besar yang saat ini dihadapi oleh sektor akuakultur. Penerapan antibiotik yang 
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tidak efektif untuk mengobati penyakit bakterial, menyebabkan perlunya strategi alternatif 
untuk mengatasi masalah tersebut. Pendekatan antivirulensi adalah strategi yang sangat 
menjanjikan yang bertujuan untuk menghentikan bakteri patogen dalam menyebabkan 
kerusakan pada inang dengan mengganggu mekanisme virulensinya. Pendekatan ini 
melibatkan pemahaman mekanisme patogenisitas bakteri yang dapat dikembangkan menjadi 
metode terapi baru. Terdapat banyak perkembangan dalam melawan infeksi bakteri, seperti 
mengganggu komunikasi inang-patogen dan menghambat quorum sensing (QS). Terapi 
antivirulensi menawarkan keuntungan yang signifikan karena secara spesifik menargetkan 
virulensi bakteri tanpa memberikan tekanan berlebihan pada pertumbuhan bakteri, sehingga 
mengurangi risiko berkembangnya resistensi. Reviu ini menguraikan keterbatasan penggunaan 
antibiotik dan menyajikan wawasan terkini mengenai mekanisme patogenisitas bakteri dan 
strategi antivirulensi dalam budidaya perikanan. Reviu ini terutama menyoroti dampak sinyal 
patogen inang melalui katekolamin, hormon stres, dan mekanisme QS pada bakteri patogen 
tertentu dalam akuakultur. Pengaruh hormon stres inang terhadap pertumbuhan dan virulensi 
patogen patut diperhatikan. Quorum sensing (QS) diketahui mengatur ekspresi gen virulensi 
tertentu sebagai respons terhadap kepadatan bakteri dengan melepaskan dan mendeteksi 
molekul sinyal kecil yang disebut autoinduser. Reviu ini lebih lanjut menjelaskan berbagai 
strategi untuk mengganggu mekanisme QS, termasuk menghambat biosintesis molekul 
sinyal, menggunakan antagonis QS, inaktivasi kimia, atau biodegradasi sinyal QS. Strategi 
yang menjanjikan ini telah dianggap sebagai langkah pertama dan bukti dari konsep strategi 
antivirulensi untuk mencegah wabah penyakit pada budidaya perikanan.

KATA KUNCI: faktor virulensi; quorum quenching; quorum sensing; resistan antibiotik; 
vibriosis 

INTRODUCTION 

Aquaculture refers to the farming of aquatic 
animals and plants in environments that can 
be natural or controlled, including marine, 
brackish or freshwater settings. This activity 
includes the production process, such as 
breeding in hatchery to rearing and harvesting 
market-size products in ponds, tanks, cages or 
raceways (Food and Agriculture Organization, 
2024). Aquaculture fulfills multiple roles, 
including the cultivation of aquatic species for 
human consumption, ornamental species for 
the aquarium trade, and other species used in 
pharmaceutical, nutritional, and biotechnology 
products. Aquaculture stands as the fastest-
growing sector in animal food production 
(Anderson et al., 2017) and plays a vital role in 
the economic development of both developed 
and developing nations. With a global fish 
production of around 179 million tonnes 
and a first-sale value of approximately USD 

401 billion in 2018, aquaculture contributed 
82 million tonnes valued at USD 250 billion, 
showcasing its significant economic impact 
(Food and Agriculture Organization, 2020). 
As global capture fishery production remains 
unchanging while the human population 
continues to grow, aquaculture is the key to 
meeting the increasing demand for safe and 
high-quality aquatic food in the future. 

Despite the rapid growth of the global 
intensive aquaculture industry, it continues 
to grapple with significant challenges in 
controlling infectious bacterial diseases. The 
aquatic environment, unlike the terrestrial 
environment, provides an ideal breeding ground 
for pathogenic bacteria, posing a threat to the 
health of aquatic species. This translates to 
highly unpredictable survival rates, especially 
in the early stages of aquaculture species 
(Irsath et al., 2023). Infectious diseases caused 
by viral, bacterial, and eukaryotic pathogens 
significantly hamper aquaculture production, 
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leading to industry-wide losses exceeding 
US$6 billion annually. Notably, sectors like 
shrimp farming suffer severe economic and 
social impacts, with total losses surpassing 
40% of global capacity (Stentiford et al., 2017). 

In aquaculture, the impact of infectious 
diseases is significant, causing both economic 
losses and animal welfare problems. To 
combat this issue, farmers often rely on 
chemical compounds as antimicrobial agents 
to treat bacterial diseases. These agents 
include disinfectants, anthelmintic agents, 
and commonly used antibiotics (Danner & 
Merrill, 2006; Schar et al., 2020; Zhou et al., 
2020). Antibiotics play a crucial role in treating 
various bacterial infections (Defoirdt, 2014; 
Thiang et al., 2021). However, the emergence 
and spread of antibiotic-resistant bacteria and 
resistance genes, as well as the presence of 
antimicrobial residues in aquaculture products 
and the environment, have raised concerns 
about the use of antibiotics in this industry. 
The challenge of diseases caused by antibiotic-
resistant bacteria is also significant. Therefore, 
it is paramount to develop alternative methods 
and techniques to control pathogenic bacteria 
for the sustainable development of the 
aquaculture sector. 

ANTIBIOTICS PROBLEM IN AQUACULTURE

In the realm of aquaculture, antibiotics are 
essential for fighting bacterial diseases, just 
as they are in human medicine and terrestrial 
animal production. These applications are 
categorized as therapeutic, prophylactic or 
metaphylactic. Table 1 lists various classes of 
antibiotics utilized in aquaculture, along with 
examples of pathogenic bacteria in aquaculture 
exhibiting (multi)resistance. Instead of directly 
injection into the adult aquaculture animal, the 
use of antibiotics in aquaculture is commonly 
added to the feed, which is then delivered 
to the animal by placed in the rearing water, 
whereas in some cases, antibiotics may be 
added directly to the water. Almost every 
aquaculture farmer uses antibiotics to protect 
their culture animals from diseases. A wide 

range of antibiotics, encompassing over ten 
different types including chloramphenicol, 
trimethoprim, gentamicin, tetracyclines, 
tiamulin, quinolones, and sulfonamides, were 
deployed (Schar et al., 2020). The common 
antibiotics used are also different in different 
countries; for instance, oxytetracycline, 
oxolinic acid, chloramphenicol, furazolidone, 
nitrofurans, and erythromycin (Suprapto et 
al., 2015), and oxytetracycline, florfenicol, 
trimethoprim-sulfamethoxazole, sarafloxacin, 
and enrofloxacin (Prena et al., 2020). 

The increase in bacterial diseases in 
intensive aquaculture farming has led to an 
increase in the use of antibiotics. The use of 
antimicrobials in the aquaculture industry has 
been documented, which may contribute to 
the rise of antimicrobial resistance, carrying 
potential consequences for animal-, human-, 
and ecosystem health (Defoirdt et al., 2011; 
Schar et al., 2020). The overuse of antibiotics 
in aquaculture has led to harmful effects in 
many farms worldwide. The most common 
way antibiotics are given to aquaculture 
animals is by mixing them with specially 
formulated feed. However, this method is 
not very effective because fish and other 
aquaculture animals do not effectively break 
down antibiotics. As a result, about 75 percent 
of the antibiotics fed to the animals are 
excreted into the water (Burridge et al., 2010). 
These leftover antibiotics can be ingested by 
wild fish and shellfish, and the rest can remain 
in the sediment. These leftover antibiotics can 
lead to the selection of antibiotic-resistant 
bacteria, changing the composition of the 
sediment’s microflora (Cabello, 2006). A study 
found that Vibrio harveyi strains with multiple 
resistances caused mass mortality in Penaeus 
monodon larvae (Karunasagar et al., 1994). 
The resistance gene determinants in aquatic 
antibiotic-resistant bacteria have the potential 
to be transmitted to terrestrial bacteria 
through horizontal gene transfer, including 
to human and animal pathogens (Ishida et al., 
2010; Miller & Harbottle, 2018; Sørum, 2006;). 
This has been observed in Salmonella enterica 
serotype Typhimurium and Vibrio cholerae 
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Table 1. Various classes of antibiotics used in aquaculture

Class of antibiotic Mode of Action Examples Country References

Aminoglycosides* Inhibiting bacterial protein 
synthesis by binding to 
bacterial ribosomes

Streptomycin Vietnam Dung et al. (2008)

Neomycin China Liu et al. (2017)

Inhibit protein synthesis Kanamycin Greece, Italy, France, and Egypt El-Gohary et al. (2020); 
Pepi et al. (2021) 

Glycopeptides* Inhibit bacterial cell wall 
biosynthesis

Teicoplanin China Zhao et al. (2024)

Ansamycins* Inhibit bacterial RNA 
synthesis

Rifamycin China, 
the Philippines, and Vietnam

Lulijwa et al. (2020)

Amphenicols** Inhibit protein synthesis Florfenicol, 
Thiamphenicol 
and florfenicol, 
amphenicols

Chile, South Korea, Turkey, 
China, Viet Nam, Chile, Korea, 
and Portugal

Jang et al. (2018)

Interfering with bacterial 
protein synthesis

Chloramphenicol Chile Saavedra et al. (2018)

Beta-lactams* Inhibit bacterial cell wall 
biosynthesis

Amoxicillin Australia Algammal et al. (2022)

Ampicillin Vietnam, Thailand, Malaysia, 
Indonesia

Suyamud et al. (2024); 
Teo et al. (2000)

Fluoroquinolones** Enrofloxacin Spain, and Portugal Avendano-Herrera et al. 
(2008)

Macrolides** Inhibit the synthesis of 
protein by bacteria

Erythromycin China Broughton et al. (2009)

Nitrofurans** binds bacterial DNA which 
leads to the gradual 
inhibition of monoamine 
oxidase

Furazolidones Greece Smith & Christofilogiannis 
(2007)

inhibit the citric acid cycle, 
the synthesis of DNA, RNA, 
and protein

Nitrofurantoin Taiwan Liu et al. (1997)

Inhibit bacterial cell wall 
biosynthesis

Furazolidone, 
nitrofurantoin, 
nitrofurazone and 
furaltadone

China, Vietnam, Korea and 
Portugal.

Bondad-Reantaso et al. 
(2023)

Quinolones* Interfere with bacterial DNA 
replication and transcription

Oxolinic acid, 
enrofloxacin, 
ciprofloxacin, 
norfloxacin, nalidixic 
acid, ofloxacin, 
levofloxacin, 
enoxacin, 
sarafloxacin and 
flumequine

China, Philippines, Vietnam, 
South Korea, Egypt, Thailand, 
and Brazil

Lulijiwa et al. (2020); 
Tendencia & de la Pena 
(2001)  

Sulphonamides** Prevent bacterial growth and 
multiplication

Sulphadiazine India Das et al. (2009)

Tetracyclines** Inhibit the synthesis of 
protein by bacteria

Tetracycline China, Vietnam, South Korea, 
Thailand, Brazil, and Malaysia

Algammal et al. (2022); 
Lo et al. (2014); Shah et 
al. (2014); Suyamud et 
al., 2024

Oxytetracycline Canada Food and Drug 
Administration (2022); 
McIntosh et al. (2008)

Doxycycline Brazil, Finland, Chile, Taiwan 
Province of China, Vietnam, 
Bangladesh, Korea, South 
Africa, Tunisia, and Portugal. 

Bondad-Reantaso et al. 
(2023)

*Commonly act as bactericidal agents, causing bacterial cell death
**Commonly act as bacteriostatic agents; restrict growth and multiplication
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(Cabello, 2006; Defoirdt et al., 2011; Miller & 
Harbottle, 2018; Sørum, 2006). 

Another significant issue is the difficulty 
in determining the current dose of antibiotics 
used in aquaculture due to variations in 
distribution and registration systems across 
different countries (Burridge et al., 2010). In 
1994, about 500-600 metric tons of antibiotics 
were used in shrimp farm production in 
Thailand (Moriarty, 1999). Antibiotic use 
varies greatly between countries, with Norway 
using 1 g per metric ton of production and 
Vietnam using up to 700 g per metric ton 
(Smith, 2008). It is crucial to address the 
limited data availability that hinders our 
understanding of antibiotic usage and content 
in the aquaculture sector. Research by Heuer 
et al. (2009) and Smith (2008) highlights the 
challenges in obtaining a complete overview of 
this issue. The presence of residual antibiotics 
in commercialized aquaculture products 
due to this problem creates unpredictability 
and poses a risk to human health. Overuse 
of antibiotics in aquaculture has been linked 
to the unnoticed intake of these substances 
by humans consuming aquaculture animals 
such as fish and shrimp (Cabello, 2006). This 
unnoticed intake can lead to allergies and 
toxicity, which are difficult to diagnose due 
to the lack of information about antibiotic 
content in the aquaculture products. 

From an aquatic environment perspective, 
the effect of excessive usage and large residual 
amounts of antibiotics on the normal flora 
and plankton in the aquatic environment can 
result in changes in the diversity of the aquatic 
microbiota by eutrophication because of high 
input of N, C, and P from non-ingested feed 
and feces in the water. Moreover, the heavy 
use of antibiotics is also capable of altering 
ecological equilibrium at the microorganism 
level, such as indicated by algal blooms and 
anoxic environments that have a big influence 
on the higher levels of consumers such as fish 
and humans (Cabello, 2006). 

Those cumulative issues led to a significant 
restriction in the use of antibiotics in the 
aquaculture industry in numerous countries 

(Cabello, 2006; Defoirdt et al., 2011). This 
restriction is not only strict regulations 
including prescription and proscription on the 
use of antibiotics, but also on the presence of 
antibiotic residues in aquaculture products. 
However, some countries that lack adequate 
regulation on antibiotic usage in aquaculture 
often face a problem in the worldwide trade 
of their aquaculture product. Their export 
product was rejected because the antibiotic 
residues were over the limit of maximum 
residue levels (MRLs) that are applied by many 
importing countries that have more strict 
regulations (Scalia-Bruce, 2023).

Intensive studies are underway to find 
alternative methods to protect aquaculture 
animals from pathogenic bacteria due to 
the negative impact of using antibiotics 
in this sector. One alternative strategy to 
replace antibiotic usage in aquaculture is 
by preventing the pathogenic bacteria from 
attacking the host without the need to kill 
them, called the antivirulence strategy. This 
strategy targets non-essential pathways of 
bacterial metabolism; therefore, it does not 
pose a strong pressure on the pathogen, 
making it unlikely to develop resistance. 
Indeed, this strategy needs a comprehensive 
understanding of the virulence mechanism by 
which pathogenic bacteria cause disease in 
aquaculture animals (Defoirdt, 2014). 

VIRULENCE MECHANISM OF AQUACULTURE 
PATHOGENS

Virulence Factors

Infection by pathogenic bacteria triggers 
the activation of diverse virulence factors 
that are crucial for the pathogen to invade 
and harm its host. These essential virulence 
factors include gene products that play a role 
in adhesion, motility, host tissue degradation, 
toxin secretion, iron acquisition, and defense 
against host immunity (Defoirdt, 2014). Some 
studies showed that several factors have an 
influence on virulence factor expression, such 
as regulated by quorum sensing mechanism, 
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bacterial cell-to-cell communication (Natrah 
et al., 2011; Yang & Defoirdt, 2015), and 
increased by the presence of catecholamine 
stress hormones in media containing serum 
(Pande et al., 2014; Yang et al., 2014). Virulence 
factors play a critical role in the infectious cycle 
of pathogenic bacteria. These factors facilitate 
the entry of the pathogen into the host, as 
well as the establishment and multiplication 
of bacterial cells. They also help the bacteria 
evade host defenses, cause damage to host 
tissues and cells, and eventually exit the host. 

The virulence factors of pathogenic bacteria 
have different mechanisms to infect their target 
hosts. Some important mechanisms, including 
bacterial motility, adhesion, production of 
lytic enzymes, chemotaxis, biofilm formation, 
siderophores, production of extracellular 
polysaccharides, iron acquisition, and secretion 
systems, have been reported (Defoirdt, 2014). 
Bacterial motility, adhesion, and chemotaxis 
play crucial roles in successfully infecting a host 
by colonizing and adhering to the host surface 
(Yang & Defoirdt, 2015). The production of 
extracellular polysaccharides (EPS) and biofilm 
formation enhances bacterial resistance to 
phagocytosis, providing protection from 
antimicrobial agents (Chen et al., 2010). 
Moreover, the production of lytic enzymes, 
such as hemolysins, proteases, lipases, and 
chitinases, is essential for breaking down 
host tissues and enabling the pathogen to 
obtain nutrients and spread through tissues 
(Finlay & Falkow, 1997). Additionally, the iron 
acquisition mechanism is vital for thriving 
within the iron-repleted environment of a host. 
Many pathogenic bacteria can acquire iron 
via siderophores, and the secretion system is 
instrumental for transporting virulence factors 
out of the cell (Defoirdt, 2014).

Regulations

Understanding how bacteria regulate 
their pathogenicity is crucial for developing 
effective alternative treatments for bacterial 
diseases in aquaculture. Identifying the 
gene products responsible for bacterial 

pathogenicity and how these virulence factors 
are controlled is essential. Pathogenicity is 
not strictly species-dependent but rather a 
characteristic of specific bacterial strains, 
with some being highly virulent and others 
not. The relationship between the presence 
of virulence genes and bacterial pathogenicity 
is not always clear. In pathogenic bacteria, 
the production of virulence factors is tightly 
regulated, involving mechanisms such as cell-
to-cell communication (quorum sensing) and 
ToxR, and is also influenced by host factors 
(Natrah et al., 2011; Ruwandeepika et al., 2012). 

Quorum Sensing 

Quorum sensing is a crucial regulatory 
mechanism in bacteria. It allows them 
to coordinate gene expression based on 
their population density using small signal 
molecules called autoinducers. This system 
was initially discovered in luminous marine 
bacteria such as Vibrio fischeri and Vibrio 
harveyi (Fuqua et al., 1996; Miller & Bassler, 
2001), but similar systems were later found in 
many other bacteria (Bassler, 1999). Quorum 
sensing systems can use N-acyl-homoserine 
lactones (AHLs) as signal molecules, or multi-
channel signaling (Defoirdt et al., 2011). AHLs 
of different species typically contain invariable 
lactone rings connected to variable acyl side 
chains with four carbons and 18 carbons. 
This acyl chain can have an oxo or hydroxyl 
substitution at the third position (Figure 1). 
Some aquaculture pathogens like Yersinia 
ruckeri, Aeromonas hydrophila, Edwardsiella tarda, 
Aeromonas salmonicida, and Vibrio anguillarum 
use AHLs as signal molecules, while the multi-
channel quorum sensing system is found in 
vibrios such as Vibrio harveyi and Vibrio vulnificus 
(Milton, 2006; Natrah et al., 2011).

The quorum sensing system in Vibrio 
campbellii strains BB120 (=ATCC BAA-1116) 
is one of the most intensively studied (Lin 
et al., 2010) (Figure 2). This bacterium uses 
three different signals: Harveyi Autoindicer-1 
(HAI-1), Autoinducer-2 (AI-2), and Cholerae 
Autoinducer 1 (CAI-1) (Cao & Meighen, 1989; 
Chen et al., 2002; Higgins et al., 2007). 
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Figure 1. Chemical structures of different AHL molecules produced by different aquaculture 
pathogenic bacteria species: a. N-butanoyl-L-homoserine lactone produced by Aeromonas 
hydrophila and Aeromonas salmonicida, b. N-(3-hydroxybutanoyl)-L-homoserine lactone 
produced by Vibrio campbellii, c. and d. N-(hydroxyhexanoyl)-L-homoserine lactone and 
N-(oxododecanoyl)-L-homoserine lactone, both produced by Vibrio anguillarum, and e. 
N-tetradecanoyl-L-homoserine lactone

Figure 2. Quorum sensing in Vibrio harveyi. The LuxM, LuxS, and CqsA enzymes synthesize the 
autoinducers HAI-1, AI-2, and CAI-1, respectively. These autoinducers are detected 
at the cell surface by the LuxN, LuxQ, and CqsS two-component receptor proteins, 
respectively. Detection of AI-2 by LuxQ requires the periplasmic protein LuxP. The 
receptors feed a common phosphorylation or dephosphorylation signal transduction 
cascade regulating the expression of target genes.  denotes phosphotransfer 

A B

C D

E
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Discoveries in the detection of 
autoinducers by surface district membrane-
bound, two-component receptor proteins 
have led to a better understanding of how 
these proteins initiate a signal transduction 
cascade controlling the production of the 
transcriptional regulator protein LuxR (Taga & 
Bassler, 2003). The significant role of quorum 
sensing in regulating the expression of various 
virulence factors in pathogenic bacteria and 
influencing virulence towards different hosts 
in vivo has garnered substantial attention 
and research efforts focused on developing 
techniques to disrupt quorum sensing (Defoirdt 
et al., 2008; Pande et al., 2013) are underway.

Host Factors

Consideration of host factors is crucial 
in understanding the expression of virulence 
in bacterial infections. Several metabolism 
products and stress levels of the host play a 
significant role in the success of bacterial 
infections. It has been established that host 
stress can diminish the activity of the host 
defense system, thus influencing the outcome 
of host-microbe interactions (Vicente-Santos et 
al., 2023). Moreover, new findings indicate that 
infectious bacteria have evolved specialized 
detection systems to identify stress hormones 
produced by their host, which may have a 
potential link to the heightened virulence of 
pathogens (Sarkodie et al., 2019). 

Catecholamines Stress Hormones

Research has primarily honed in the 
impact of stress hormones such as adrenaline 
(epinephrine), noradrenaline (norepinephrine), 
and dopamine on the growth and virulence 
of pathogenic bacteria in the host gut tissues 
(Freestone et al., 2008). It has been demonstrated 
that these hormones can influence the growth, 
motility, biofilm formation, and/or virulence 
of intestinal pathogens like Escherichia coli 
and Salmonella spp. (Verbrugghe et al., 2012). 
Notably, catecholamines have been shown 
to enhance the growth and virulence of the 

human pathogenic Vibrio parahaemolyticus 
in serum-based media (Nakano et al., 2007). 
This suggests that the response of bacteria 
to catecholamines may be important in 
the virulence of aquaculture pathogenic 
bacteria, as the host organisms produce these 
hormones. Norepinephrine and dopamine 
significantly induced virulence in two 
aquaculture pathogenic bacteria, V. campbellii 
and V. anguillarum, by increasing motility and 
growth in media containing serum (Pande et al., 
2014). The addition of serum accurately mimics 
the iron-limited host environment, where 
transferrin, a high-affinity ferric-iron-binding 
protein, regulates iron availability (Freestone 
et al., 2008). Current literature supports the 
mechanism wherein catecholamines create 
complexes with transferrin, leading to the 
reduction of ferric iron (Fe3+) to ferrous 
iron (Fe2+). This process weakens the bond 
between iron and transferrin, making iron 
available for bacterial use (Freestone, 2013; 
Lyte, 2014). In addition, some studies reported 
that catecholamines enhanced the motility of 
E. coli, Salmonella typhimurium, Campylobacter 
jejuni, and the common aquaculture pathogen 
E. tarda and V. harveyi (Bearson & Bearson, 
2008; Cogan et al., 2007; Kendall et al., 2007; 
Wang et al., 2011; Yang et al., 2014).

The research has found that the antagonist 
of eukaryotic catecholamine receptors can 
counteract some of the effects of catecholamines 
(Pande et al., 2014) (see Figure 3).  The 
eukaryotic dopamine receptor antagonist 
effectively neutralized the motility-inducing 
effect of dopamine in the aquaculture pathogen 
V. campbellii. Additionally, the α-adrenergic 
receptor antagonists phentolamine and 
phenoxybenzamine successfully counteracted 
the motility-inducing effect of norepinephrine. 
In contrast, the β-adrenergic receptor 
antagonist propranolol had minimal to no 
impact (Pande et al., 2014). Other research 
have shown that both α-adrenergic and 
β-adrenergic receptor antagonists were capable 
of blocking the response of E. coli O157:H7 to 
norepinephrine and epinephrine (Sperandio 
et al., 2003). Moreover, the virulence of V. 
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campbellii was found to increase towards the 
larvae of giant freshwater prawn Macrobrachium 
rosenbergii when they were pre-treated with 
catecholamines, without affecting the growth 
of surviving larvae. Nevertheless, the effects of 
catecholamine receptor antagonists on in vivo 
virulence were less definitive compared to the 
in vitro experiments (Pande et al., 2014). These 
findings highlight the potential of receptor 
antagonists in modulating the effects of 
catecholamines and merit further exploration 
for their potential applications.

Mucin, Bile Salts, and Cholesterol

The expression of virulence factors in 
bacteria can be influenced by various host 
factors, including stress hormones, mucin, 
bile salts, and cholesterol (Defoirdt, 2014; 
Li et al., 2014). Studies have shown that 
these host factors can increase the virulence 
factors of V. anguillarum, including protease 

activity, flagellar motility, biofilm formation, 
and exopolysaccharide production, without 
affecting the growth of the bacterium towards 
gnotobiotic sea bass (Dicentrarchus labrax) 
larvae (Li et al., 2014). Additionally, bile has 
been found to trigger the production of 
virulence factors such as type III secretion 
system-related protein, hemolysins, and 
capsular polysaccharide in V. parahaemolyticus 
(Hsieh et al., 2003). 

Interference Virulence Factors

Several innovative methods have been 
developed to combat bacterial infections in 
aquaculture without relying on antibiotics, by 
targeting virulence factors. This antivirulence 
strategy involves disrupting the regulation of 
virulence factor expression, impacting multiple 
virulence factors simultaneously, or specifically 
inhibiting a particular virulence factor (Defoirdt, 
2014). Efforts have been made to interfere 

Figure 3. Chemical structure of the catecholamine hormones (adrenaline, noreadrenaline or 
norepinephrine, and dopamine) and eukaryotic receptor antagonist (chlorpromazine, 
phentolamine, phenoxybenzamine, and propranolol) 

Adrenaline Noradrenaline or 
Norepinephrine

Dopamine

Dopaminergic 
Chlorpromazine Reversible 

α-adrenergic 
phentolamine irreversible 

α-adrenergic 
phenoxybenzamine

β-adrenergic 
propanolol
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with virulence regulatory mechanisms, such 
as inhibiting bacterial quorum sensing with 
quorum sensing disrupting agents (Defoirdt et 
al., 2012; Lu et al., 2022; Natrah et al., 2012; 
Pande et al., 2013; Zhou et al., 2020), and 
interfering with bacterial detection of host 
catecholamines stress hormones by the QseC 
receptor (Rasko et al., 2008). Additionally, 
specific virulence factors have been inhibited 
by blocking bacterial secretion systems with 
acylated salicylaldehyde hydrazones and 
thiazolidinones (Baron, 2010), and inhibiting 
bacterial pili formation, known as pilicides, 
with bicyclic 2-pyridones (Clatworthy et al., 
2007). Nonetheless, this strategy is yet to be 
tested against aquaculture pathogens and 
requires further exploration.

Quorum Sensing Inhibition

The increasing understanding of 
bacterial pathogenesis has led to efforts to 
inhibit bacterial cell-to-cell communication 
mechanisms known as quorum quenching. 
Quorum sensing inhibition, which is a key area 
of study in antivirulence strategies, can be 
achieved through various methods including 
inhibiting signal molecule biosynthesis, using 
quorum sensing antagonists, chemically 
inactivating and enzymatically degrading 
quorum sensing signal molecules, and using 
quorum sensing agonists (Defoirdt et al., 2004; 
Kalia, 2013). Further exploration of these 
different methods is needed to identify the 
most effective approach for treating bacterial 
diseases across various fields, including 
aquaculture.

Researchers have successfully reduced 
the production of quorum sensing signal 
molecules by using substrate analogs (Defoirdt 
et al., 2004). For example, S-adenosylcysteine, 
an analog of S-adenosylmethionine, has been 
found to decrease the activity of Pseudomonas 
aeruginosa LuxI RhlI by up to 97% (Parsek et 
al., 1999). S-adenosylmethionine, a substrate 
for the homoserine lactone moiety utilized 
by homologs of V. fischeri LuxI protein, plays 
a crucial role in the biosynthesis of Gram-

negative AHL signal molecules (Whitehead 
et al., 2001). This research highlights the 
potential use of S-adenosylmethionine 
analogs as specific inhibitors of quorum 
sensing, offering a targeted approach without 
disrupting essential processes in prokaryotic 
and eukaryotic organisms (Defoirdt et al., 
2004).

Quorum sensing antagonists can 
effectively block the transmission of signal 
molecules, offering a promising strategy 
to control virulence factors in aquaculture 
pathogens. One type of quorum sensing 
antagonist is long-chain natural AHLs produced 
by bacteria. These AHLs have been shown to 
reduce the production of virulence factors in 
aquaculture pathogens such as A. hydrophila 
and A. salmonicida, and protect burbot 
(Lota lota) larvae from infection by these 
pathogens (Natrah et al., 2012). Another type 
of quorum sensing antagonists is synthetic 
quorum sensing inhibitory AHL analogs, 
such as halogenated furanones, brominated 
thiophenones, and cinnamaldehyde (Benneche 
et al., 2011; Brackman et al., 2008; Janssens 
et al., 2008) (Figure 4). Furanones specifically 
disrupt AHL-mediated quorum sensing by 
interacting with the LuxR-type AHL receptor, 
reducing the amount of LuxR available as a 
transcriptional regulator (Menefield et al., 
2002). Furanones and thiophenones have also 
been shown to block the multichannel quorum 
sensing systems of vibrios by decreasing the 
DNA-binding activity of the master regulator 
LuxRvh (Defoirdt et al., 2007). Studies have 
demonstrated the protective effect of these 
antagonists against vibrios in both fish and 
crustacean larvae (Defoirdt et al., 2006; Pande 
et al., 2013). However, it’s crucial to note 
that while these compounds offer significant 
benefits, caution should be exercised as 
halogenated furanones can be toxic to higher 
organisms at specific concentrations. 

A further method is by chemical 
inactivation of quorum-sensing molecules. 
The quorum sensing signal can be chemically 
inactivated by yielding the cognate acyl 
homoserine via alkaline hydrolysis at pH ≥ 8 
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Figure 4. Chemical structure of some quorum sensing-disrupting compounds. a. Cinnamaldehyde, 
b. The brominated thiophenone (Z)-4-((5-bromomethylene)-2-oxo-2,5-dihydrothiophen-
3-yl)-4-oxo-butanoic acid, c. The natural furanone (5Z)-4-bromo-5-(bromomethylene)-
3-butyl-2(5H)-furanone, produced by the red marine algae Delisea pulchra, and d. The 
synthetic derivative (5Z)-4-bromo-5-(bromomethylene)-2(5H)-furanone

A

B

C

D

Figure 5. Degradation of AHL molecules by the action of acylase and lactonase enzyme

(Decho et al., 2011), and by oxidized halogen 
antimicrobials for 3-oxo-substituted AHLs 
(Michels et al., 2000). The signal inactivated by 
oxidizing indicated that treating culture water 
with strong oxidizing agents, such as ozone, 
for removing the signal molecules of pathogen 
quorum sensing system might be useful as an 
anti-infective strategy in aquaculture (Defoirdt 
et al., 2004).

Quorum sensing can be effectively 
disrupted through enzymatic breakdown of 

signal molecules. This method is commonly 
utilized to interfere with AHLs quorum sensing 
signals (Kalia & Purohit, 2011). Enzymatic 
degradation, based on the AHL structure, can 
be facilitated by deaminase lactonase, acylase, 
and decarboxylase (Hong et al., 2012). 

The lactonase enzyme plays a crucial role 
in breaking down AHLs by cleaving the ester 
bond of the lactone ring, which are important 
for binding with specific transcriptional 
regulators (Dong et al., 2000). This enzyme is 
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encoded by the AHL-inactivating activity (AiiA) 
gene and is found in various Bacillus species 
(Dong et al., 2002). Similarly, the AHL acylase 
enzyme contributes to a significant reduction 
in the effectiveness of the signaling molecule 
by breaking the peptide bond of the lactone 
ring, releasing a fatty acid, and homoserine 
lactone (Fast & Tipton, 2012). 

The use of AHL-degrading enrichment 
culture to break down AHL-signal molecules 
has been found beneficial in certain 
aquaculture animals (Cam et al., 2009; Nhan 
et al., 2010; Tinh et al., 2007;). AHL-degrading 
enrichment cultures can be developed by 
using media that contain AHLs as the primary 
carbon and/or nitrogen source. Pure strains of 
AHL-degrading Bacillus sp. have been isolated 
from this enrichment culture (Defoirdt et al., 
2011). Therefore, bacteria with the ability to 
break down quorum sensing signal molecules 
may be useful as a new type of probiotics for 
aquaculture.

Future Perspectives 

In our comprehensive review, we provided 
an insightful analysis of antibiotic challenges 
and offered compelling alternative strategies 
for effectively controlling bacterial infections 
in aquaculture. The antivirulence strategy 
stands out as a particularly promising method 
for combating diseases caused by aquaculture 
pathogenic bacteria. One of its key advantages 
lies in its significantly lower potential for 
bacterial resistance development compared 
to antibiotics. This is due to the fact that the 
selective pressure exerted is confined to the 
pathogens through specific killing by phages 
or targeted disruption of quorum sensing 
in specific environments. This is a marked 
contrast to the broad impact of conventional 
antibiotics, which also affect harmless and 
beneficial bacteria (Defoirdt et al., 2011).

To ensure success, aquaculture’s 
antivirulence strategy requires precise targeting 
of specific pathogens in their respective 
environments. Hence, a comprehensive 
understanding of the virulence mechanisms of 

aquaculture pathogenic bacteria is imperative. 
Recent scientific breakthroughs have unveiled 
promising antivirulence strategies, such as 
disrupting bacterial cell-to-cell communication 
and host-pathogen signaling. Further 
exploration of these mechanisms holds great 
potential for advancing disease treatment. A 
deeper grasp of this knowledge could pave 
the way for innovative biocontrol methods 
to combat bacterial diseases and infections, 
offering a sustainable alternative to antibiotics 
in aquaculture. 
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