PENGARUH SUPLEMENTASI ASKORBIL FOSFAT MAGNESIUM SEBAGAI SUMBER VITAMIN C DALAM PAKAN TERHADAP REPRODUKSI INDUK IKAN GURAME (Osphronemus goramy Lac.)

Lies Setijaningsiha, Zafril Imran Azwara, Estu Nugrohoa, dan M. Sulhia

ABSTRAK

Penelitian yang bertujuan untuk mengetahui pengaruh suplementasi Askorbil Fosfat Magnesium sebagai sumber vitamin C terhadap produktivitas reproduksi ikan gurame (Osphronemus goramy Lac.) telah dilakukan di Loka Riset Pemuliaan dan Teknologi Budidaya Perikanan Air Tawar, Sukamandi. Dua puluh lima pasang induk ikan gurame dengan bobot 1.9–2.1 kg/ekor dipelihara dalam 25 unit kolam tanah masing-masing berukuran 5x5 m2 dan kedalaman 0.8 m. Induk percobaan diberi pakan dengan perlakuan penambahan Askorbil Fosfat Magnesium sebagai sumber vitamin C dalam berbagai dosis dan vitamin E dalam dosis tetap sebanyak 300 mg/kg pakan, sehingga perlakuan adalah: A (ransum tanpa suplemen AFM dan tanpa vit E); B (dengan vitamin E); C (suplemen AFM 500 mg dan vitamin E); D (suplemen AFM 1.000 mg dan vitamin E); E (suplemen AFM 1.500 mg dan vitamin E). Hasil percobaan memperlihatkan bahwa penambahan AFM dalam pakan menstimulasi kecepatan pematangan gonad, produksi telur, dan daya tetas telur. Suplementasi AFM 500 mg/kg pakan memberikan respon terbaik terhadap perkembangan gonad dan derajat pembuahan.

ABSTRACT: The Effect of Ascorbyl Phosphate Magnesium Suplement as Source of Vitamin C on the Reproductive Performance of Giant Gouramy (Osphronemus goramy Lac.). By: Lies Setijaningsih, Zafril Imran Azwar, Estu Nugroho, and M. Sulhi

An experiment of ascorbyl phosphate magnesium effect, as source of vitamin C in broodstock diet, on the reproductive performance of giant gouramy (Osphronemus goramy Lac.) was conducted at Research Institute for Freshwater Fisheries of Sukamandi. Twenty five pairs of male and female with individual body weight range of 1.9–2.1 kg were reared in 25 earth pond 5x5 m2 in size and 0.8 m in depth, respectively. During experiment giant gouramy broodstock were given experimental diets as treatments i.e.; experimental diet without vitamin E and without AFM (A=control); experimental diet with only vitamin E 300 mg/kg (B); experimental diet with vitamin E 300 mg and AFM 500 mg/kg (C); experimental diet with vitamin E 300 mg and AFM 1,000 mg/kg (D); experimental diet with vitamin E 300 mg and AFM 1,500 mg/kg (E). Result of the experiment indicated that broodstock diet with vitamin and AFM could stimulate gonadal maturation and improved fecundity and hatching rate of giant gouramy. Diet with vitamin E 300 mg and AFM 500 mg/kg gave the best respon of the reproductive performance (maturity and spawning activity) of giant gouramy.

KEYWORDS : giant gouramy, vitamin C, vitamin E, reproduction, broodstock

a) Peneliti pada Loka Riset Pemuliaan dan Teknologi Budidaya Perikanan Air Tawar, Sukamandi
ab) Peneliti pada Balai Riset Perikanan Budidaya Air Tawar, Bogor
PENDAHULUAN

Ketersediaan benih baik kualitas maupun kuantitas yang sesuai merupakan hal paling penting yang mempengaruhi proses produksi dalam budi daya perikanan. Ikan gurame adalah salah satu spesies ikan budi daya air tawar yang ketersediaan benihnya masih merupakan kendala, karena sintasan benih hingga mencapai ukuran siap dibesarkan masih rendah. Di samping itu juga secara genetik ikan ini memiliki fekunditas yang rendah menyebabkan untuk mendapatkan produksi benih yang banyak dibutuhkan induk dalam jumlah yang banyak pula. Pemeliharaan induk dalam jumlah yang banyak dinilai kurang efisien karena akan meningkatkan biaya perawatan induk.

Berbagai hasil percobaan telah membuktikan bahwa kecukupan pakan dan gizi pakan untuk induk ikan sangat mempengaruhi proses perkembangan sel telur, jumlah dan kualitas telur yang dihasilkan (Watanabe, 1984). Kualitas telur merupakan refleksi keadaan kimia nutrisi kungen telur, yang sangat dipengaruhi oleh kandungan gizi pakan yang diberikan dan kesehatan induk (Reay dalam Hardjamulia, 1988). Hasil penelitian Mokoginta (1992) mencatat bahwa kecukupan asam lemak dalam ransum pakan ikan lele (Clarias batrachus) sangat mempengaruhi perkembangan gonad, kualitas telur serta larva yang dihasilkan, dan asam lemak esensial mutlak harus ditambahkan dalam ransum karena tidak dapat disintesis oleh ikan. Pendapat yang serupa disampaikan oleh Laven dan Sorgeloos (1991) bahwa asam lemak tak jenuh sangat diperlukan dalam perkembangan larva. Lebih lanjut dinyatakan bahwa selain senyawa asam lemak unsur mikro vitamin juga merupakan senyawa penting bagi perkembangan gonad dan larva. Penelitian oleh Watanabe (1984) mencatat bahwa penambahan pigment B karoten 0,1% dan astasantin 0,3% pada ransum ikan red sea bream nyata meningkatkan kualitas telur, namun tidak berpengaruh terhadap jumlah telur yang dihasilkan. Ikan mas, Cyprinus carpio Linn (Watanabe, 1984) dan ikan tawes (Suseno & Tangendjaja, 1989) mencapai kematangan gonad lebih cepat jika pakan diberi vitamin E yang mencukupi dibandingkan pakan yang tidak diberi vitamin E. Menurut Basri (1997), penambahan vitamin E sebanyak 300 mg/kg pakan dapat mempercepat waktu pencapaian matang gonad induk ikan gurame, meningkatkan fekunditas, derajat pembuahan dan derajat penetasan telur. Peranan vitamin C terhadap aktivitas reproduksi juga telah diteliti pada udang, Penaeus japonicus (Alava et al., 1993); ikan nila (Azwar, 1997); ikan bandeng (Azwar et al., 2001); ikan kerapu batik, Epinephelus microdon (Makatutu, 2002). Dari berbagai hasil penelitian tersebut memperlihatkan bahwa ada perbaikan kualitas telur dan larva jika induk diberi vitamin C yang mencukupi.

Ikan gurame memiliki tulang yang bersifat mengapung, kaya akan lemak dan asam lemak yang berperan sebagai sumber energi dalam perkembangan embrio dan larva. Namun ikatan rangkap pada asam lemak dalam sel mudah teroksidasi dan mengganggu fungsi metabolisme sel. Pada sel telur kondisi ini dapat mengakhikan perkembangan embrio terganggu dan menyebabkan persentase telur dan kualitas larva yang dihasilkan akan rendah. Penggunaan vitamin E maupun C dalam ransum dapat berperan sebagai antioksidan, sehingga menjaga fungsi asam lemak dalam metabolisme membran sel. Dalam sel vitamin E akan berperan sebagai anti oksidan pada asam lemak dan sel, dan vitamin C berperanan anti oksidan senyawa senyawa yang larut dalam air. Berbagai penelitian menunjukkan juga bahwa disamping sebagai anti oksidan, vitamin C juga berperanan dalam siklus reproduksi, memperbaiki kualitas telur dan perkembangan larva. Informasi kebutuhan dan peranan vitamin C untuk pemeliharaan induk ikan gurame belum banyak diketahui. Penelitian ini bertujuan mempelajari pengaruh ascorbil fosfat magnesium sebagai sumber vitamin C terhadap penampilan reproduksi ikan gurame.

BAHAN DAN METODE

Percobaan dilaksanakan di Loka Riset Pemuliaan dan Tehtologi Budidaya Perikanan Air Tawar, Sukamandi Jawa Barat selama 90 hari. Wadah percobaan yang digunakan adalah kolam tanah sebanyak 25 unit dan masing-masing berukuran 5 x 5 m² dengan kedalaman air 0,8 m. Induk gurame yang digunakan berukuran berat individu 1,9-2,1 kg/ekor dengan padat tebar 2 ekor per kolam terdiri dari satu pasang jantan dan betina. Setiap kolam ditempatkan sarang yang terbuat dari bambu, di dalamnya diletakkan ijuk halus, sebagai tempat ikan memijah dan menaruh telurnya. Induk percobaan diberi pakan pelet berkadar protein 40% dengan perlakuan penambahan Ascorbil Fosfat Magnesium (AFM) sebagai sumber vitamin C dalam berbagai dosis dan vitamin E dalam dosis tetap sebanyak 300 mg/kg pakan,
sehingga perlakuan adalah: A (ransom tanpa suplemen AFM dan vitamin E) sebagai kontrol; B (suplemen vitamin E); C (suplemen AFM 500 mg dan vitamin E); D (suplemen AFM 1000 mg dan vitamin E); E (suplemen AFM 1500 mg dan vitamin E). Komposisi bahan baku ransum dan hasil analisis proksimasi pakan disajikan dalam Tabel 1. Besarnya ransum harian yang diberikan adalah 2% perbiomassa perhari dan 3 hari sekali diberi 1% perbiomassa berupa pakan hijauan (daun sente).

Parameter yang diamati untuk meng- evaluasi respon perlakuan adalah kecepatan perkembangan gonad yang dinyatakan oleh periode waktu induk dapat memijah dari awal percobaan, produksi telur, derajat pembuahan yang dilihat dari warna telur, derajat penetasan dan diameter telur. Telur yang dipelapaskan di sarang dikoleksi, kemudian dipindahkan dalam wadah dan dihitung untuk mengetahui jumlah telur yang diproduksi setiap pemijahan. Dari tiap perlakuan diambil secara acak 500 butir telur untuk diamati daya tetasnya. Pengamatan derajat pembuahan telur dilakukan dengan mengamati secara visual terhadap telur setelah 24 jam dari induk memijah. Telur yang dibuahi akan berwarna kuning cerah dan yang tidak dibuahi akan berwarna kuning keputih-putihan. Sedangkan derajat penetasan telur dihitung dengan membandingkan antara jumlah telur yang menetas dengan total telur yang diuji.

HASIL DAN BAHASAN

Perkembangan Gonad

Periode waktu (hari) sejak ikan diberi perlakuan hingga mengalami ovulasi secara alami digunakan sebagai evaluasi respon perlakuan terhadap kecepatan perkembangan gonad. Hasil pengamatan terhadap pencapaian ovulasi induk ikan uji, untuk setiap perlakuan, ulangan dan rataan selama penelitian disajikan

<table>
<thead>
<tr>
<th>Bahan (Ingredients)</th>
<th>Pakan (Diets)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tepung Ikan (Fish meal)</td>
<td></td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Tepung Kedelai (Soybean meal)</td>
<td></td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>Tepung Jagung (Corn meal)</td>
<td></td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Dedak (Rice brain)</td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Polar (Wheat pollard)</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Minyak Jagung (Corn oil)</td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Vitamin Mix 11</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Mineral Mix</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Vitamin C</td>
<td></td>
<td></td>
<td>0.05</td>
<td>0.1</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>Vitamin E</td>
<td></td>
<td></td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Selolusa (Cellulose)</td>
<td></td>
<td>1</td>
<td>0.97</td>
<td>0.92</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Komposisi proksimasi (Proximate compositions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein (Crude protein)</td>
</tr>
<tr>
<td>Lemak (Crude Lipid)</td>
</tr>
<tr>
<td>Abu (Ash)</td>
</tr>
<tr>
<td>Serat kasar (Crude fibre)</td>
</tr>
<tr>
<td>BETN (Nitrogen free extract)</td>
</tr>
<tr>
<td>Kadar Air (Moisture)</td>
</tr>
</tbody>
</table>

11 Vitamin mix (mg/100 g pakan/diet): Thiamin 10, Riboflavin 16, Pyridoxin mg, Ca-D-Pantothenate 30, Nicotinic acid 30, Biotin 5, Folic Acid 1, B12, 2. Cholin Chloride 2000, Inositol 100, Vitamin A 20, Vitamin D3 1, Vitamin K 20.
pada Tabel 2. Waktu rata-rata mencapaian pemijah (ovulasi) tercepat pada perlakuan AFM 1.500 mg/kg pakan (C) yaitu 55 hari, kemudian diikuti dengan perlakuan AFM 1.000 mg/kg pakan (D) yaitu rata-rata 60 hari dan perlakuan AFM 500 mg/kg pakan (C) rata-rata selama 72 hari, dan perlakuan vitamin E 300 mg/kg pakan (B) dicapai selama 75 hari. Sedangkan waktu terlama dicapai pada perlakuan tanpa vitamin E dan AFM (A) dengan rata-rata 88 hari.

Dengan kondisi perkembangan gonad pada masing-masing perlakuan ini hingga akhir penelitian terjadi pemijahan satu kali pada perlakuan A, B, dan D. Populasi induk yang dijual pada perlakuan C dan E masing-masing ditemui 1 ekor dan 2 ekor induk memijah 2 kali. Pada bulan ketiga semua induk pada masing-masing perlakuan telah memijah.

Hasil analisis ragam menunjukkan bahwa penambahan AFM dalam pakan nyata mempengaruhi kecepatan induk gurame mencapai matang gonad (ovulasi) (P<0,05). Hasil uji BNT menunjukkan bahwa respon mencapai periode ovulasi pada induk yang diberi perlakuan B, C, D, E nyata lebih cepat (P <0,05) dibandingkan dengan perlakuan A. Ini mengindikasikan bahwa baik penambahan vitamin E maupun vitamin C atau penambahan keduanya akan memberikan respon lebih baik terhadap kecepatan perkembangan gonad ikan gurame. Analisis lebih lanjut menunjukkan bahwa waktu pencapaian ovulasi induk yang diberi perlakuan B tidak berbeda nyata dengan perlakuan C, dan demikian juga dengan perlakuan D tidak berbeda nyata dengan perlakuan E (P>0,05). Ini mengindikasikan bahwa perkembangan gonad induk gurame pada perlakuan penambahan AFM 500 mg/kg pakan dalam ransum memberikan respon yang sama dengan induk yang menerima pakan dengan hanya suplementasi vitamin E 300 mg/kg pakan. Namun penambahan AFM lebih dari 1.000 mg/kg pakan baru memberikan respon memijah lebih cepat dibandingkan dengan perlakuan penambahan AFM 500 mg/kg pakan (Tabel 2). Walaupun demikian terlihat bahwa ada kecenderungan semakin tinggi dosis AFM yang diberikan pada batas perlakuan semakin cepat waktu untuk mencapai ovulasi. Hal yang serupa juga ditemui dari hasil percobaan pada ikan nila, Oreochromis niloticus (Azwar, 1997); ikan bandeng, Chanos-chanos Forskal (Azwar et al., 2001); udang, Penaeus japonicus (Alava et al., 1993); ikan kerapu batik, Epinephelus microdon (Makatutu, 2002). Penelitian Ishibashi et al. (1994) terhadap ikan Oplegnathus fasciatus mencatat bahwa tidak ditemui oosit yang mencapai stadium vitelogenesis pada ikan yang menerima pakan tanpa suplementasi vitamin C (asam askorbat), dan jumlah induk yang mengandung oosit vitelogenesis meningkat dengan meningkatnya dosis vitamin C yang diberikan dalam ransum. Hal serupa ditemui juga dari hasil penelitian Azwar (1997) terhadap ikan nila, terlihat juga bahwa terjadi perkembangan yang lambat dari oosit stadium 3 menjadi stadium 4 (vitelogenesis) jika pakan tidak diberi vitamin C yang mencukupi. Penelitian Waagbo et al. (1989) pada ikan rainbow trout (Onchorhynchus mykiss) mencatat bahwa induk yang menerima pakan tanpa suplementasi vitamin C, kadar vitelogenin dalam serumnya lebih rendah dibandingkan induk yang menerima pakan dengan suplementasi vitamin C 2.000 mg/kg pakan.

Tabel 2. Lama waktu (hari) pencapaian matang gonad induk ikan gurame pada berbagai dosis ascorbilk fosfat fosfat magnesium (APM)

<table>
<thead>
<tr>
<th>Perlakuan Treatment</th>
<th>Ulangan (Replicates)</th>
<th>Rataan Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Tanpa AFM & vit. E (Free APM & vit. E)</td>
<td>90</td>
<td>84</td>
</tr>
<tr>
<td>Vitamin E 300 mg</td>
<td>65</td>
<td>84</td>
</tr>
<tr>
<td>AFM 500 mg & vit. E</td>
<td>69</td>
<td>75</td>
</tr>
<tr>
<td>AFM 1.000 mg & vit. E</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>AFM 1.500 mg & vit. E</td>
<td>49</td>
<td>55</td>
</tr>
</tbody>
</table>

Angka yang diikuti huruf dengan superscript yang sama tidak berbeda nyata (Values with the same superscript indicated not significantly different) (P>0,05)
Meningkatnya viteloginen dalam serum darah pada saat musim reproduksi ikan, disebabkan oleh mekanisme kerja hormon estradiol (Azwar, 2003). Djioyosoebagio (1990) mengemukakan bahwa dalam biosintesis hormon steroid reproduksi terjadi beberapa tahapan reaksi hidroksilasi, dan gangguan terhadap proses reaksi akan menghambat biosintesis. Vitamin C berperan dalam reaksi hidrosilasi biosintesis hormon steroid (Horning et al., 1984; Sandnes, 1984). Waagbo et al. (1989) melaporkan bahwa kadar estradiol dalam serum induk ikan trout yang diberi pakan dengan suplementasi vitamin C 2.000 mg/kg pakan lebih tinggi dibandingkan dengan induk menerima pakan tanpa vitamin C. Kadar estradiol induk ikan trout yang menerima pakan dengan suplementasi vitamin C meningkat dari 76,3 menjadi 89,2 nM pada masa viteloginesis, sedangkan pada induk yang menerima perlakuan kontrol menurun dari 64,0 menjadi 51,1 nM selama musim reproduksi. Penelitian Azwar (1997) mencatat pula bahwa kandungan kolesterol ovarium induk ikan nila yang menerima pakan tanpa vitamin C lebih tinggi dibandingkan dengan induk yang menerima pakan dengan vitamin C, yang mengindikasikan bahwa ada keterbatasan mobilisasi kolesterol ke bentuk hormon steroid reproduksi pada saat perkembangan ovarium. Kondisi ini mengakibatkan induk ikan yang menerima pakan tanpa vitamin C perkembangan ovarium akan terbatas. Dalam hal ini, sama ditemui pada induk-induk ikan gurame yang menerima pakan tanpa vitamin C maupun E mengalami perkembangan gonad jauh lebih lambat dibandingkan dengan induk yang menerima pakan cukup kedua vitamin tersebut.

Produksi Telur

Hasil pengamatan terhadap produksi telur dari induk yang memijah memperlihatkan bahwa tertinggi ditemui pada perlakuan suplemen suplementasi ascorbil fosfat magnesium 500 mg/kg pakan yaitu rata-rata mencapai 5312,8 butir, sedangkan terendah yaitu pada perlakuan kontrol sebanyak rata rata 654,4 butir (Tabel 3).

Tabel memperlihatkan juga bahwa produksi telur pada perlakuan B, C, D dan E dan lebih tinggi daripada perlakuan A. Hasil analisis sidik ragam memperlihatkan bahwa dengan adanya penambahan AFM dan vitamin E 300 mg/kg pakan nyata (P<0.05) meningkatkan produksi telur. Selanjutnya hasil Analisis BNT menunjukkan bahwa produksi telur induk ikan gurame pada perlakuan C, D dan E nyata lebih tinggi dibandingkan dengan perlakuan A dan B. Dari hasil percobaan ini yang menghasilkan jumla total telur terbanyak adalah perlakuan C (vitamin E 300 mg/kg pakan + vitamin AFM 500 mg/kg pakan). Hasil penelitian Makatutu (2002), juga mendapatkan bahwa induk ikan kerapu batik yang diberi pakan dengan suplementasi AFM 3.000 mg/kg pakan menghasilkan telur lebih tinggi dibandingkan induk yang menerima pakan tanpa suplementasi AFM. Matsumoto et al. (1991) dalam Makatutu (2002) melaporkan bahwa induk ikan crucian carp yang diberi pakan dengan suplementasi vitamin C menghasilkan produksi telur lebih tinggi dibandingkan tanpa suplementasi vitamin C. Sedangkan hasil penelitian Basri (1997) memperlihatkan bahwa Induk gurame asal Sumatera Barat yang diberi pakan dengan suplementasi vitamin E dosis 437 mg/kg pakan menghasilkan total telur sebanyak 12.067 butir.

Tabel 3. Produksi telur rata-rata induk ikan gurame pada berbagai dosis AFM

<table>
<thead>
<tr>
<th>Perlakuan Treatment</th>
<th>Ulangan (Replicates)</th>
<th>Rataan (telur) Average (eggs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Tanpa AFM & vit. E (Free AFM & vit. E)</td>
<td>728</td>
<td>890</td>
</tr>
<tr>
<td>Vitamin E 300 mg</td>
<td>664</td>
<td>3,145</td>
</tr>
<tr>
<td>AFM 500 mg & vit. E</td>
<td>3,566</td>
<td>8,137</td>
</tr>
<tr>
<td>AFM 1,000 mg & vit. E</td>
<td>5,231</td>
<td>4,645</td>
</tr>
<tr>
<td>AFM 1,500 mg & vit. E</td>
<td>2,598</td>
<td>7,341</td>
</tr>
</tbody>
</table>

Angka yang diikut huruf dengan superscript yang sama tidak berbeda nyata (Values with the same superscript indicated not significantly different) (P>0.05)
Penelitian Novenny (1998) terhadap induk gurame asal Parung mencatat bahwa induk yang diberi pakan dengan suplementasi vitamin E sebanyak 1.20 mg/kg pakan menghasilkan total telur 8.769 butir. Hasil produksi telur yang ditemui dari kedua peneliti ini lebih tinggi dibandingkan dengan hasil dari percobaan yang dilakukan. Ini mungkin berkaitan dengan perbedaan strain dan ukuran induk ikan yang digunakan dalam percobaan. Ukuran ikan yang digunakan dalam percobaan ini lebih kecil dibandingkan ukuran ikan yang digunakan oleh kedua peneliti lainnya.

Vitamin C memainkan peranan penting bagi pemeliharaan integritas jaringan pengikat, yang banyak menyusun struktur jaringan kolagen pada berbagai organ tubuh, antara lain penyusun kantong ovariun, lapisan dalam pembuluh darah. Kolagen adalah sejenis protein yang merupakan salah satu komponen utama jaringan ikan. Sintesis kolagen dapat terjadi jika tersedia prolin dan lysin, serta kecukupan vitamin C dalam jaringan, karena vitamin C sangat esensial dalam proses hidroksilasi prolin dan lysin membentuk kolagen sebagai bagian dari jaringan ikan (Hornig et al., 1984). Sebagian besar dari bagian dalam kantong ovarium terdiri atas kolagen penyusun jaringan ikan, serta susunan pembuluh darah yang sangat berperanan dalam distribusi material ke dalam sel-sel telur Cardinal dan Underfriend dalam Soliman et al. (1986). Pada kondisi vitamin C yang mencukupi dalam jaringan ovarium, memungkinkan distribusi material ke dalam sel telur akan lebih baik, sehingga sel-sel telur akan berkembang dengan baik. Hasil penelitian Ishibasi et al. (1994) terhadap ikan *Japanese parrot* mencatat bahwa sel sel telur dapat berkembang dengan baik pada ikan yang diberi pakan cukup vitamin C dan tidak ditemui telur yang mengalami atresia. Kondisi demikian kemungkinan penyebab meningkatnya produksi telur ikan gurame berkaitan dengan suplementasi vitamin C yang mencukupi dalam ransum.

Kualitas Telur

Derajat Pembuahan dan Penetasan Telur, digunakan sebagai ukuran kualitas telur yang dihasilkan pada masing-masing perlakuan. Derajat pembuahan telur dianalisis dari warna telur setelah 24 jam telur dipijahkan. Telur yang dibuahi akan berwarna kuning cerah dan yang tidak dibuahi akan berwarna kuning keputih putihan. Hasil pengamatan terhadap derajat pembuahan menunjukkan bahwa induk yang diberi pakan tanpa suplementasi vitamin E dan C memperlihatkan derajat pembuahan yang paling rendah yaitu 70,082% (Tabel 4).

Hasil analisis statistik memperlihatkan bahwa derajat pembuahan telur ikan gurame nyata (*P*<0,05) di pengaruhi oleh suplementasi vitamin E maupun vitamin C. Selanjutnya hasil pengujian BNT memperlihatkan bahwa derajat pembuahan telur antara perlakuan B, C, D, dan E tidak memperlihatkan perbedaan yang nyata, namun semuanya berbeda nyata, namun semua nyata lebih tinggi dari perlakuan A. Hasil percobaan ini mengindikasikan bahwa penambahan vitamin C dan E dalam ransum sangat nyata mempengaruhi derajat pembuahan telur. Sedikit informasi dari hasil penelitian yang menggambarkan hubungan suplementasi vitamin C maupun E dengan derajat pembuahan. Dabrowski et al. (1995) yang mengamati induk ikan trout yang diberi pakan dengan berbagai dosis askrobil fosfat magnesium mencatat bahwa kadungan testosterone plasma meningkat dengan meningkatnya dosis, dan ada sedensi kualitas

<table>
<thead>
<tr>
<th>Perlakuan Treatment</th>
<th>Ulangan (Replicates)</th>
<th>Rataan (Average)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Tanpa AFM & vit. E (Free AFM & vit. E)</td>
<td>70.13</td>
<td>71.99</td>
</tr>
<tr>
<td>Vitamin E 300 mg</td>
<td>82.53</td>
<td>99.40</td>
</tr>
<tr>
<td>AFM 500 mg & vit. E</td>
<td>99.31</td>
<td>99.37</td>
</tr>
<tr>
<td>AFM 1,000 mg & vit. E</td>
<td>96.62</td>
<td>99.70</td>
</tr>
<tr>
<td>AFM 1,500 mg & vit. E</td>
<td>99.29</td>
<td>99.69</td>
</tr>
</tbody>
</table>

Angka yang diikuti huruf dengan superscript yang sama tidak berbeda nyata (*Values with the same superscript indicated not significantly different*) (*P*>0.05)

Hasil pengamatan terhadap derajat penetasan telur memperlihatkan bahwa derajat penetasan telur tertinggi dicapai pada perlakuan C yaitu 94,81% dan terendah terdapat pada perlakuan A dengan rata-rata 35,58% (Tabel 5).

Hasil analisis ragam menunjukkan bahwa derajat penetasan telur antar perlakuan menunjukkan perbedaan yang nyata (P<0.05). Hasil uji BNT memperlihatkan bahwa derajat penetasan telur perlakuan C nyata lebih tinggi (P<0.05) dibandingkan dengan perlakuan A, B, D, dan E. Sedangkan derajat penetasan telur pada perlakuan B, D dan E tidak menunjukkan perbedaan yang nyata (P>0.05), namun ketiganya nyata lebih tinggi (P<0.05) dibandingkan perlakuan A (kontrol). Hasil percobaan ini memperlihatkan bahwa suplementasi vitamin E, atau AFM sebagai sumber vitamin C dan E sangat mempengaruhi derajat penetasan telur ikan gurame. Namun semakin besar penambahan AFM pada pakan tidak memperlihatkan perbaikan terhadap derajat penetasan. Hasil ini berlaku sama pada hasil penelitian Azwar (1997) yang menyatakan bahwa suplementasi AFM berpengaruh nyataterhadap daya tetas telur ikan nila dengan kecenderungan respon kuartik. Sedangkan penelitian Makatutu (2002) pada ikan kerapu batik (Epinephelus microdon) memperlihatkan bahwa daya tetas telur dari induk yang menerima pakan dengan suplementasi ascorbil fosfat magnesium masing-masing dosis 0, 1.500, 2.250, dan 3.000 mg/kg pakan adalah 76%; 95,50%; 93%; 98,3%. Tidak jelas faktor penyebab menurunnya daya tetas telur ikan gurame dengan meningkatnya dosis ascorbil fosfat magnesium. Hasil pengamatan terhadap kandungan vitamin C dalam telur memperlihatkan bahwa kandungan vitamin C telur meningkat dengan meningkatnya dosis ascorbil fosfat dalam pakan. Pada masing masing perlakuan dosis vitamin C 500, 1.000, 1.500 mg/kg pakan dihasilkan telur dengan kadar vitamin C masing-masing adalah 530, 690, 800 µg/g, sedangkan pada perlakuan kontrol dan hanya penambahan vitamin E diperoleh kadar vitamin C telur masing-masing 97 dan 290 µg/g. Masih tingginya kandungan vitamin C dalam telur pada kedu perlakuan ini, berkaitan pula dengan diberikannya pakan daun sente setiap 3 hari. Namun, tidak tercatat jumlah daun sente yang di konsumsi oleh kedu perlakuan tersebut, yang menyebabkan penambahan vitamin C telur pada perlakuan vitamin E (B) jauh lebih tinggi dibandingkan perlakuan tanpa pemberian vitamin dalam pakan (A).

Hasil percobaan beberapa peneliti mencatat bahwa ada kaitan antara kandungan vitamin C dalam telur dengan daya tetas telur ikan rainbow trout (Oncorhynchus mykiss) (Sandnes et al., 1994; Dabrowski & Blom, 1984), ikan nila (Oreochromis niloticus) (Soliman et al., 1986). Sandnes (1984) telah mengamati kandungan vitamin C telur dari 2 kelompok pembenihan ikan salmon, yang pertama selalu menghasilkan daya tetas telur tinggi dan kedua dari kelompok yang selalu menghasilkan derajat penetasan telur yang rendah, dan diketahui bahwa kadar vitamin C telur kelompok pertama adalah 65 µg/g, sedangkan dari kelompok kedua adalah 5 µg/g. Rendahnya daya tetas

Tabel 5. Derajat penetasan telur (%) ikan gurame pada perbedaan dosis AFM

<table>
<thead>
<tr>
<th>Perlakuan (Treatment)</th>
<th>Ulangan (Replicates)</th>
<th>Rataan Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Tanpa AFM dan vit. E (Free</td>
<td>36.66</td>
<td>33.24</td>
</tr>
<tr>
<td>APM dan vit. E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin E 300 mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFM 500 mg dan vit. E</td>
<td>63.75</td>
<td>66.92</td>
</tr>
<tr>
<td>AFM 1.000 mg dan vit. E</td>
<td>95.95</td>
<td>97.51</td>
</tr>
<tr>
<td>AFM 1.500 mg dan vit. E</td>
<td>79.19</td>
<td>62.57</td>
</tr>
</tbody>
</table>

Angka yang diikuti huruf dengan superscript yang sama tidak berbeda nyata (Values with the same superscript indicated not significantly different) (P>0.05)
telur pada perlakuan kontrol (A) ini mungkin ada kaitannya dengan rendahnya vitamin C dalam telur. Kecukupan vitamin C dalam telur sangat berperanan dalam perkembangan embrio dan larva, terutama berkaitan dengan pembentukan dan perkembangan jaringan Hasil penelitian Makatutu (2002) mencatat bahwa ada peningkatan rasio prolin/lishin selama perkembangan embrio dan larva ikan kerapu batik berkaitan dengan meningkatnya dosis askorbil fosfat magnesium dalam ransum pakan. Peningkatan rasio prolin/lishin akan meningkatkan pembentukan jaringan ikat tubuh saat embrio dan larva berkembang, dan ini sangat mempengaruhi daya tetas telur. Namun efek dari peningkatan vitamin C dalam telur yang terlalu tinggi terhadap pembentukan jaringan serta pengaruhnya terhadap perkembangan embrio, seperti yang dialami pada perlakuan D dan E, yang masing-masing kandungan vitamin C telur adalah 690 dan 800 μg/g dengan daya tetas yang menurun perlu diteliti lebih lanjut.

KESIMPULAN DAN SARAN

1. Pemberian vitamin E dan askorbul fosfat magnesium sebagai sumber vitamin C sangat berperan dalam mempengaruhi siklus reproduksi ikan gurame

2. Pemberian askorbul fosfat magnesium sebagai sumber vitamin C sebanyak 500 mg/kg pakan memberikan respon terbaik terhadap perkembangan gonad, peningkatan produksi dan kualitas telur ikan gurame.

3. Vitamin C harus dipertimbangkan sebagai suplemen penting dalam ransum induk ikan gurame.

DAFTAR PUSTAKA

