IDENTIFIKASI SENYAWA POTENSIAL ANTIOKSIDAN PADA MAKROALGA COKELAT Turbinaria ornata DARI PANTAI GUNUNGKIDUL, YOGYAKARTA

Wiwin Kusuma Perdana Sari, Muslimin Muslimin

Abstract


Makroalga cokelat memiliki kandungan senyawa bioaktif yang bermanfaat dalam berbagai bidang kesehatan. Salah satu jenis makroalga cokelat dengan potensi antioksidan adalah Turbinaria ornata. Penelitian ini bertujuan untuk mengidentifikasi kandungan senyawa potensial antioksidannya. Fraksinasi terhadap ekstrak T. ornata dilakukan untuk memfokuskan jenis senyawa potensial antioksidan. Ekstrak dan fraksi dengan potensi antioksidan terbaik dianalisis kandungan senyawanya dengan gas chromatography-mass spectrometry (GC-MS). Pemantauan dengan plat kromatografi lapis tipis (KLT) juga dilakukan terhadap fraksi dengan potensi antioksidan terbaik. Hasil analisis GC-MS dan KLT mengidentifkasi senyawa hidrokarbon dodecane, asam lemak ester hexadecanoic acid ethyl ester, monoterpenoid dyhidroacnidiolide dan loliolide, senyawa fenol resorcinol serta flavonoid kaempherol sebagai senyawa-senyawa potensial pendukung aktivitas antioksidan makroalga cokelat T. ornata. Study menyimpulkan bahwa senyawa-senyawa tersebut memiliki potensi dalam mendukung aktivitas antioksidan makroalga cokelat T. ornata.

Brown macroalgae contain abundant bioactive compounds and are used in various medical applications. Turbinaria ornata is one of the brown macroalgae species suspected to have promising antioxidant potential. This recent study was conducted to identify the potential antioxidant compounds in T. ornata. Fractionation of T. ornata extract was done to differentiate the types of potential antioxidant compounds. Extracts and fractions with the best antioxidant potential were analyzed using gas chromatography-mass spectrometry (GC-MS). The fractions with the best antioxidant potential were monitored using the thin layer chromatography (TLC) plate. The analyses have determined the presence of bioactive compounds such as dodecane, hexadecanoic acid ethyl ester, monoterpenoids dyhidroacnidiolide and loliolide, resorcinol and kaempherol in the tested samples of brown macroalga T. ornata. These compounds have measurable effects on the antioxidant activity of the brown macroalgae. This study concluded that the identified bioactive compounds are deemed as potential compounds supporting the antioxidant activity of the brown macroalgae T. ornata.


Keywords


antioksidan; Turbinaria ornata; GC-MS; KLT; identifikasi senyawa; antioxidant, turbinaria ornata, GC-MS, TLC, compound identification

Full Text:

PDF

References


Bae, M., Kim, M. B., Park, Y. K., & Lee, J. Y. (2020). Health benefits of fucoxanthin in the prevention of chronic diseases. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1865(11), 1–7. https://doi.org/10.1016/j.bbalip.2020.158618

Bharath, B., Perinbam, K., Devanesan, S., AlSalhi, M. S., & Saravanan, M. (2021). Evaluation of the anticancer potential of Hexadecanoic acid from brown algae Turbinaria ornata on HT–29 colon cancer cells. Journal of Molecular Structure, 1235, 130229. https://doi.org/10.1016/j.molstruc.2021.130229

Cai, X., Xiao, M., Tang, J., Huang, B., & Xue, H. (2021). Rapid enrichment and separation of two novel minor phenols from Malus hupehensis utilizing liquid–liquid extraction with three-phase solvent system and high-speed counter-current chromatography based on the polarity parameter. Journal of Separation Science, 44(9), 2021. https://doi.org/10.1002/jssc.202001083

Catarino, M. D., Silva, A. M. S., & Cardoso, S. M. (2017). Fucaceae: A source of bioactive phlorotannins. International Journal of Molecular Sciences, 18(6). https://doi.org/10.3390/ijms18061327

Deepak, P., Sowmiya, R., Balasubramani, G., & Perumal, P. (2017). Phytochemical profiling of Turbinaria ornata and its antioxidant and anti-proliferative effects. Journal of Taibah University Medical Sciences, 12(4), 329–337. https://doi.org/10.1016/j.jtumed.2017.02.002

Diao, M., Liang, Y., Zhao, J., Zhao, C., Zhang, J., & Zhang, T. (2021). Enhanced cytotoxicity and antioxidant capacity of kaempferol complexed with α-lactalbumin. Food and Chemical Toxicology, 153(April), 112265. https://doi.org/10.1016/j.fct.2021.112265

Fouda, W. A., Ibrahim, W. M., Ellamie, A. M., & Ramadan, G. (2019). Biochemical and mineral compositions of six brown seaweeds collected from red sea at hurghada coast. Indian Journal of Geo-Marine Sciences, 48(4), 484–491.

Getachew, A. T., Jacobsen, C., & Holdt, S. L. (2020). Emerging technologies for the extraction of marine phenolics: Opportunities and challenges. Marine Drugs, 18(8), 1–22. https://doi.org/10.3390/MD18080389

Güven, K. C., Percot, A., & Sezik, E. (2010). Alkaloids in marine algae. Marine Drugs, 8(2), 269–284. https://doi.org/10.3390/md8020269

Harborne, J. B. (1987). Phytochemical Methods : A Guide to Modern Techniques of Plant Analysis.

Huang, M., Cheng, Z., Wang, L., Feng, Y., Huang, J., Du, Z., & Jiang, H. (2018). A targeted strategy to identify untargeted metabolites from in vitro to in vivo: Rapid and sensitive metabolites profiling of licorice in rats using ultra-high performance liquid chromatography coupled with triple quadrupole-linear ion trap mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1092(May), 40–50. https://doi.org/10.1016/j.jchromb.2018.05.044

Kelman, D., Posner, E. K., McDermid, K. J., Tabandera, N. K., Wright, P. R., & Wright, A. D. (2012). Antioxidant activity of Hawaiian marine algae. Marine Drugs, 10(2), 403–416. https://doi.org/10.3390/md10020403

Köpke, D., Müller, R. H., & Pyo, S. M. (2019). Phenylethyl resorcinol smartLipids for skin brightening – Increased loading & chemical stability. European Journal of Pharmaceutical Sciences, 137(July), 104992. https://doi.org/10.1016/j.ejps.2019.104992

Kosanic, M., Rankovic, B., & Stanojkovic, T. (2019). Brown macroalgae from the Adriatic Sea as a promising source of bioactive nutrients. Journal of Food Measurement and Characterization, 13, 330–338. https://doi.org/doi.org/10.1007/s11694-018-9948-4

Lee, S. E., Kwon, K., Oh, S. W., Park, S. J., Yu, E., Kim, H., Yang, S., Park, J. Y., Chung, W. J., Cho, J. Y., & Lee, J. (2021). Mechanisms of resorcinol antagonism of benzo[a]pyrene-induced damage to human keratinocytes. Biomolecules and Therapeutics, 29(2), 227–233. https://doi.org/10.4062/biomolther.2020.083

Locatelli, M., Gindro, R., Travaglia, F., Coïsson, J. D., Rinaldi, M., & Arlorio, M. (2009). Study of the DPPH{radical dot}-scavenging activity: Development of a free software for the correct interpretation of data. Food Chemistry, 114(3), 889–897. https://doi.org/10.1016/j.foodchem.2008.10.035

Lourenço-Lopes, C., Fraga-Corral, M., Jimenez-Lopez, C., Carpena, M., Pereira, A. G., Garcia-Oliveira, P., Prieto, M. A., & Simal-Gandara, J. (2021). Biological action mechanisms of fucoxanthin extracted from algae for application in food and cosmetic industries. Trends in Food Science and Technology, September 2020. https://doi.org/10.1016/j.tifs.2021.03.012

Méresse, S., Fodil, M., Fleury, F., & Chénais, B. (2020). Fucoxanthin, a marine-derived carotenoid from brown seaweeds and microalgae: A promising bioactive compound for cancer therapy. International Journal of Molecular Sciences, 21(23), 1–27. https://doi.org/10.3390/ijms21239273

Miyahara, R. (2017). Emollients. Cosmetic Science and Technology: Theoretical Principles and Applications, 245–253. https://doi.org/10.1016/B978-0-12-802005-0.00016-1

Modjinou, T., Versace, D. L., Abbad-Andaloussi, S., Langlois, V., & Renard, E. (2017). Antibacterial and antioxidant photoinitiated epoxy co-networks of resorcinol and eugenol derivatives. Materials Today Communications, 12, 19–28. https://doi.org/10.1016/j.mtcomm.2017.03.005

Mori, J., & Khlebnikov, V. (1993). Synthesis of (+)-Dihydroactinidiolide, (+)- and (−)-Actinidiolide, (+)- and (−)-Loliolide as well as (+)- and (−)-Epiloliolide. Liebigs Annalen der Chemie, 77–82.

Neelamathi, E., & Kannan, R. (2016). Screening and Characterization of Bioactive Compounds of Turbinaria ornata from the Gulf of Mannar , India. American-Eurasian Journal of Agriculture and Environmental Science, 16(2), 243–251. https://doi.org/10.5829/idosi.aejaes.2016.16.2.12712

Pedersen, D. S., & Rosenbohm, C. (2001). Dry column vacuum chromatography. Synthesis, 16, 2431–2434. https://doi.org/10.1055/s-2001-18722

Pereira, D. M., Vinholes, J., De Pinho, P. G., Valentão, P., Mouga, T., Teixeira, N., & Andrade, P. B. (2012). A gas chromatography-mass spectrometry multi-target method for the simultaneous analysis of three classes of metabolites in marine organisms. Talanta, 100(December 2018), 391–400. https://doi.org/10.1016/j.talanta.2012.08.004

Pinto, M. E. A., Araújo, S. G., Morais, M. I., Sá, N. P., Lima, C. M., Rosa, C. A., Siqueira, E. P., Johann, S., & Lima, L. A. R. S. (2017). Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils. Anais da Academia Brasileira de Ciencias, 89(3), 1671–1681. https://doi.org/10.1590/0001-3765201720160908

Rattaya, S., Benjakul, S., & Prodpran, T. (2015). Extraction, antioxidative, and antimicrobial activities of brown seaweed extracts, Turbinaria ornata and Sargassum polycystum, grown in Thailand. International Aquatic Research, 7(1), 1–16. https://doi.org/10.1007/s40071-014-0085-3

Saeed Kotb, S., Ayoub, I. M., El-Moghazy, S. A., & Singab, A. N. B. (2020). Profiling the Lipophilic Fractions of Pithecellobium dulce Bark and Leaves Using GC/MS and Evaluation of Their Antioxidant, Antimicrobial and Cytotoxic Activities. Chemistry and Biodiversity, 17(7). https://doi.org/10.1002/cbdv.202000048

Safavi, M., Jafari Olia, M. S., Abolhasani, M. H., Amini, M., & Kianirad, M. (2021). Optimization of the culture medium and characterization of antioxidant compounds of a marine isolated microalga as a promising source in aquaculture feed. Biocatalysis and Agricultural Biotechnology, 35(May), 102098. https://doi.org/10.1016/j.bcab.2021.102098

Sari, W. K. P., & Suharyanto, S. (2021). Kandungan Pigmen dan Potensi Antioksidan Beberapa Jenis Makroalga dari Pantai Gunungkidul, Yogyakarta. Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan, 16(1), 33–42. https://doi.org/10.15578/jpbkp.v16i1.674

Shahidi, F. (1997). Natural Antioxidants : Chemistry, Health Effect, and Applications. AOCS Press.

Sharma, N., Biswas, S., Al-Dayan, N., Alhegaili, A. S., & Sarwat, M. (2021). Antioxidant role of kaempferol in prevention of hepatocellular carcinoma. Antioxidants, 10(9), 1–17. https://doi.org/10.3390/antiox10091419

Stranska-Zachariasova, M., Kurniatanty, I., Gbelcova, H., Jiru, M., Rubert, J., Nindhia, T. G. T., D’Acunto, C. W., Sumarsono, S. H., Tan, M. I., Hajslova, J., & Ruml, T. (2017). Bioprospecting of Turbinaria Macroalgae as a Potential Source of Health Protective Compounds. Chemistry and Biodiversity, 14(2). https://doi.org/10.1002/cbdv.201600192

Supriya, A., Kumar, A., & Kudachikar, V. B. (2020). A Comparison Investigation on Antioxidant Activities, Constitutive Antifungal Phenolic Lipids and Phenolics Contents of Anthracnose Resistant and Susceptible Mango Fruit Cultivars. International Journal of Fruit Science, 20(4), 692–704. https://doi.org/10.1080/15538362.2019.1668332

Tian, C., Liu, X., Chang, Y., Wang, R., Lv, T., Cui, C., & Liu, M. (2021). Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. South African Journal of Botany, 137, 257–264. https://doi.org/10.1016/j.sajb.2020.10.022

Tziveleka, L. A., Tammam, M. A., Tzakou, O., Roussis, V., & Ioannou, E. (2021). Metabolites with antioxidant activity from marine macroalgae. Antioxidants, 10(9). https://doi.org/10.3390/antiox10091431

Wang, J., Fang, X., Ge, L., Cao, F., Zhao, L., Wang, Z., & Xiao, W. (2018). Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. PLoS ONE, 13(5), 1–12. https://doi.org/10.1371/journal.pone.0197563

Zhang, F. xiang, Xie, Z. neng, Tang, X. yang, Li, C., Li, M., Yao, Z. hong, Dai, Y., & Yao, X. sheng. (2018). A combination of representative compounds, metabolism platform and diagnostic extraction strategy for characterization of metabolites of Shuang-Huang-Lian oral liquid in vivo by ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 155, 216–234. https://doi.org/10.1016/j.jpba.2018.03.066




DOI: http://dx.doi.org/10.15578/jra.17.3.2022.155-167


Lisensi Creative Commons
Jurnal Riset Akuakultur is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats
p-ISSN 1907-6754
e-ISSN 2502-6534