PENGARUH SUPLEMENTASI TRIPTOFAN MELALUI PAKAN TERHADAP KANIBALISME DAN KONSENTRASI HORMON STEROID BENIH IKAN BAUNG (Hemibagrus nemurus)
Abstract
Perilaku kanibal pada benih ikan baung (Hemibagrus nemurus) menjadi permasalahan pada pembenihannya. Salah satu pendekatan yang sudah dilakukan untuk mengendalikan kanibalisme pada ikan adalah pemberian triptofan. Penelitian ini bertujuan untuk mengetahui pengaruh triptofan terhadap kejadian kanibalisme dan kandungan konsentrasi hormon steroid pada benih ikan baung. Panjang awal benih yang digunakan adalah 4,98±0,1 cm yang dipelihara di dalam akuarium berkapasitas 20 L dengan kepadatan 3 ekor per L. Selama penelitian, benih ikan baung diberi pakan komersial (40% protein) yang disuplementasi triptofan dengan konsentrasi berbeda, yaitu tanpa suplementasi triptofan (A), suplementasi triptofan 0,25% (B), suplementasi triptofan 0,50% (C), suplementasi triptofan 0,75% (D), dan suplementasi triptofan 1% (E). Setiap perlakuan terdiri dari tiga kali ulangan. Pakan diberikan empat kali sehari secara satiasi. Parameter yang diamati adalah tipe kanibal, indeks kanibal, kematian normal, sintasan, performa pertumbuhan serta konsentrasi hormon (estradiol, testosteron, dan kortisol). Hasil penelitian menunjukkan bahwa pemberian pakan yang diperkaya triptofan memberikan penurunan kejadian kanibal dan peningkatan sintasan benih ikan baung. Pemberian triptofan juga menurunkan kandungan estradiol tubuh, dan penurunan ini ada kaitannya dengan penurunan kejadian kanibalisme. Performa pertumbuhan benih ikan baung meningkat dengan pemberian pakan yang ditambahkan triptofan. Hasil penelitian ini menunjukkan bahwa suplementasi 0,50–0,75% triptofan pada pakan efektif menurunkan kejadian kanibalisme pada benih ikan baung.
The cannibal behavior of Asian redtail catfish (Hemibagrus nemurus) is a problem in the hatchery. One approach that has been used to control cannibalism in fish is the use of tryptophan. This study aimed to determine the effect of tryptophan on the incidence of cannibalism and the content of steroid hormones in Asian redtail catfish juveniles. The study was conducted using the fish with a body length of 4.98±0.14 cm reared in aquariums with a water volume of 20 L with a density of 3 fish per L. Fish were given commercial feed (40% protein) supplemented with tryptophan with different concentrations, namely without tryptophan supplementation (A), tryptophan supplementation 0.25% (B), tryptophan supplementation 0.5% (C), tryptophan supplementation 0.75% (D), and tryptophan supplementation 1% (E). Each treatment consisted of three replications. Feed were given four times a day at satiation level. Parameters observed were cannibal type, cannibal index, normal mortality, survival rate, growth performance, and hormone concentration (estradiol, testosterone, and cortisol). The results showed that giving tryptophan through feed decreased the incidence of cannibalism and increased the survival of Asian redtail catfish juveniles. The addition of tryptophan to the feed decreased the concentration of estradiol in the body of fish and it is associated with a decrease in the incidence of cannibalism, thereby improving survival. Furthermore, the supplementation of tryptophan also increased growth performance. The results of this study showed that supplementation of 0.50-0.75% tryptophan in feed was effective in reducing the incidence of cannibals in Asian redtail catfish juveniles.
Keywords
Full Text:
PDFReferences
Ahmed, I. (2012). Dietary amino acid L-tryptophan requirement of fingerling Indian catfish, Heteropneustes fossilis (Bloch), estimated by growth and haemato-biochemical parameters. Fish Physiology and Biochemestry, 38(4), 1195–1209. https://doi.org/10.1007/s10695-012-9609-1.
Alcazar, R.M., Becker, L., Hilliard, A.T., Kent, K.R., & Fernald, R.D. (2016). Two types of dominant male cichlid fish: behavioral and hormonal characteristics. Biology Open, 5(8), 1061-1071. http://doi.org/10.1242/bio.017640
Brown, A.C., Stevenson, L.M., Leonard, H.M., Puigdoller, K.N., & Clotfelter, E.D. (2014). Phytoestrogens 𝛽-sitosterol and genistein have limited effects on reproductive endpoints in a female fish (Betta splendens). BioMed Research International, Article ID 681396, 7 pages. http://dx.doi.org/10.1155/2014/681396.
Chang, C., Li, C.Y., Earley, R.L., & Hsu, Y. (2012). Aggression and related behavioral traits: the impact of winning and losing and the role of hormones. Integrative and Comparative Biology, 52(6), 801-813. https://doi.org/10.1093/icb/ics057
Clotfelter, E.D., & Rodriguez, A.C. (2006). Behavioral changes in fish exposed to phytoestrogens. Environmental Pollution, 144, 833-839. https://doi.org/10.1016/j.envpol.2006.02.007
Cunningham, R.L., Lumia, A.R., & McGinnis, M.Y. (2012). Androgen Receptors, Sex Behavior, and Aggression. Neuroendocrinology, 96(2), 131–140. https://doi.org/10.1159/000337663
Dammann, A.A., Shappell, N.W., Bartell, S.E., & Schoenfuss, H.L. (2011). Comparing biological effects and potencies of estrone and 17β-estradiol in mature fathead minnows (Pimephales promelas). Aquatic Toxicology, 105, 559–568. https://doi.org/10.1016/j.aquatox.2011.08.011
Filby, A.L., Paull, G.C., Searle, F., Zarragoitia, M.O., & Tyler, C.R. (2012). Environmental estrogen-induced alterations of male aggression and dominance hierarchies in fish: a mechanistic analysis. Environmental Sciences and Technology, 46, 3472-3479. https://doi.org/10.1021/es204023d
Harlioglu, M.M., Harlioglu, A.G., Yonar, S.M., & Duran, T.C. (2014). Effects of dietary l-tryptophan on the agonistic behavior, growth, and survival of freshwater crayfish Astacus leptodactylus Eschscholtz. Aquaculture International, 22, 733–748. https://doi.org/10.1007/s10499-013-9702-1
Hecht, T., & Appelbaum, S. (1988). Observations on intraspesific aggression and coeval sibling cannibalism by larval and juvenile Clarias gariepinus (Clariidae: Pisces). Journal Zoology, 214(1), 21-44. https://doi.org/10.1111/j.1469-7998.1988.tb04984.x
Heltonika, B., Zairin, M.J., Widanarni., Suprayudi, M.A., Manalu, W., & Hadiroseyani, Y. (2021). Green Catfish (Hemibagrus nemurus) Seeds Cannibali at Different Stocking Densities, in: IOP Conference Series: Earth and Environmental Science, 695, 1-5. https://doi.org/10.1088/1755-1315/695/1/012028
Heltonika, B., Sudrajat, A.O., Zairin, M.J., Widanarni., Suprayudi, M.A., Manalu, W., & Hadiroseyani, Y. (2022). Cannibalistic behavior and way of predation among the fry of Asian redtail catfish Hemibagrus nemurus at different stocking densities. AACL Bioflux, 15(3), 1154-1161.
Hiroi, R., & Handa, R.J. (2013). Estrogen receptor-β regulates human tryptophan hydroxylase-2 through an estrogen response element ini the 5’ untranslated region. Journal of Neurochemistry, 127, 487–495. https://doi.org/10.1111/jnc.12401
Hoglund, E., Overli, O., & Winberg, S. (2019). Tryptophan Metabolic Pathways and Brain Serotonergic Activity: A Comparative Review Frontiers in Endocrinology, 10(15), 1-11. https://doi.org/10.3389/fendo.2019.00158
Hoseini, S.M., Hosseini, S.A., & Soudagar, M. (2012). Dietary tryptophan changes serum stress markers, enzyme activity, and ions concentration of wild common carp Cyprinus carpio exposed to ambient copper. Fish Physiology and Biochemestry, 38, 1419–1426. https://doi.org/10.1007/s10695-012-9629-x
Hoseini, S.M., Jimenez, A.P., Costas, B., Azeredo, R., & Gesto, M. (2019). Physiological roles of tryptophan in teleosts: current knowledge and perspectives for future studies. Reviews in Aquaculture, 11(1), 3–24. https://doi.org/10.1111/raq.12223.
Hseu, J.R., Lu, F.I., Su, H.M., Wang, L.S., Tsai, C.L., & Hwang, P.P. (2003). Effect of exogenous tryptophan on cannibalism, survival and growth in juvenile grouper Epinephelus coioides. Aquculture, 218, 251-263. https://doi.org/10.1016/S0044-8486(02)00503-3
Huffman, L.S., O’Connell, L.A., & Hofmann, H.A. (2013). Aromatase regulates aggression in the African cichlid fish (Astatotilapia burtoni). Physiology and Behaviour, 112-113, 77–83. https://doi.org/10.1016/j.physbeh.2013.02.004
Hulse, D. (2017). The effect of L-tryptophan on aggressive interactions in barramundi (Lates calcarifer), and food intake of Atlantic salmon (Salmo salar) during seawater transfer. Dissertation. Australia (Aus). University of Tasmania
Jin, Y., Liu, F.J., Liu, Y.J., Tian, L.X., & Zhang, Z.H. (2016). Dietary tryptophan requirements of juvenile pacific white shrimp, Litopenaeus vannamei (Boone) reared in low-salinity water. Aquaculture International, 25, 955-968. https://doi.org/10.1007/s10499-016-0098-6
Kania, B.F., Zawadzka, E., & Debski, B. (2012). Neurohormonal basis of aggression in fish. Medycyna Weterynaryjna, 68 (4), 195-198
Kumar, P., Saurabh, S., Pal, A.K., Sahu, N.P., & Arasu, A.R.T. (2014). Stress mitigating and growth enhancing effect of dietary tryptophan in rohu (Labeo rohita, Hamilton, 1822) fingerlings. Fish Physiology and Biochemestry, 40(5), 1325-38. https://doi.org/10.1007/s10695-014-9927-6
Kumar, P., Kailasam, M., Sethi, S.N., Sukumaran, K., Biswas, G., Subburaj, R., Thiagarajan, G., Ghoshal, T.K., & Vijayan, K.K. (2017). Effect of dietary L-tryptophan on cannibalism, growth and survival of Asian seabass, Lates calcarifer (Bloch, 1790) fry. Indian Journal Fish, 64(2), 28-32. https://doi.org/10.21077/ijf.2017.64.2.61333-05
Krol, J., Flisiak, W., Urbanowicz, P., & Ulikowski, D. (2014). Growth, canibalism and survival relations in larvae of European catfish (Silurus glanis) (Actinopteryhii: siluriformes: siluridae) attemts to mitigate sibling cannibalism. Acta Ichthyologica Et Piscatoria, 44(3), 191-199. https://doi.org/10.3750/AIP2014.44.3.03
Krol, J., & Zakes, Z. (2015). Effect of dietary L-tryptophan on cannibalism, survival and growth in pikeperch Sander lucioperca (L.) post-larvae. Aquacultulture International, 24(2), 441-451. https://doi.org/10.1007/s10499-015-9936-1
Laranja, J.L.Q.J., Quinitio, E.T., Catacutan, M.R., & Coloso, R.M. (2010). Effect of dietary L-tryptophan on the agonistic behaviour, growth and survival of juvenile mud crab Scylla serrata. Aquaculture, 310, 84-90. https://doi.org/10.1016/j.aquaculture.2010.09.038
Mardones, O., Devia, E., Labbé, B.S., Oyarzún, R., Vargas-Chacoff, L., & Muñoz, J.L.P. (2018). Effect of L-tryptophan and melatonin supplementation on the serotonin gastrointestinal content and digestive enzymatic activity for Salmo salar and Oncorhynchus kisutch. Aquaculture, 482, 203–210. https://doi.org/10.1016/j.aquaculture.2017.10.003
Muslimin., Haryati., & Trijuno D.D. (2011). Penambahan dosis tryptophan dalam pakan untuk mengurangi sifat kanibalisme pada larva kerapu macan (Epinephelus fuscogattatus). Jurnal Riset Akuakultur, 6(2), 271-279. http://dx.doi.org/10.1557/jra.6.2.2011.271-279.
Peterson, M.P., Rosvall, K.A., Choi, J.H., Ziegenfus, C., Colbourne, J.K., Ketterson, E.D., & Tang, H. (2013). Testosterone affects neural gene expression differently in male and female juncos: a role for hormones in mediating sexual dimorphism and conflict. PLoS ONE, 8(4)e61784, 1-10. https://doi.org/10.1371/journal.pone.0061784
Putri, H.K., Zairin, M.J., Carman, O., & Diatin, I. (2020). The use of different 17β-estradiol hormone doses and water temperatures to control cannibalism in catfish Clarias gariepinus seed. Jurnal Akuakultur Indonesia, 19 (2), 171–180. https://doi.org/10.19027/jai.19.2.171-180
Siregar, K.N., Zairin, M.J., Alimuddin, & Widanarni. (2021). Pengendalian kanibalisme benih ikan lele Afrika (Clarias gariepinus) menggunakan hormon estradiol-17ß dan pengaturan padat tebar. Jurnal Akuakultur Indonesia, 20 (1), 72–81. https://doi.org/10.19027/jai.20.1.72-81
Suharyanto. (2012). Upaya penurunan tingkat kanibalisme udang windu (Penaeus monodon) dengan penambahan dosis suplemasi triptofan yang berbeda. Biosfera, 29(1), 16-22. https://doi.org/10.20884/1.mib.2012.29.1.230
Suharyanto., & Yudhistira, D.I. (2012). Aplikasi triptofan dan glisin dalam pakan rucah serta pengaruhnya terhadap tingkat kanibalisme, pertumbuhan dan sintasan krablet kepiting bakau (Scyla serrata). Jurnal Perikanan, 16(1), 11-19. https://doi.org/10.22146/jfs.9050
Sun, Y.P., Guan, L.G., Xiong, J.H., Xi, Q.Y., & Zhang, Y.L. (2015). Effects of L-tryptophan-supplemented dietary on growth performance and 5-HT and GABA levels in juvenile Litopenaeus vannamei. Aquaculture International, 23, 235–251. https://doi.org/10.1007/s10499-014-9811-5
Tang, L., Feng, L., Sun, C.Y., Chen, G.F., Jiang, W.D., Hu, K., Liu, Y., Jiang, J., Li, S.H, Kuang, S.Y., & Zhou, X.Q. (2013). Effect of tryptophan on growth, intestinal enzyme activities and TOR gene expression in juvenile Jian carp (Cyprinus carpio var. Jian): Studies in vivo and in vitro. Aquaculture, 412–413, 23–33. https://doi.org/10.1016/j.aquaculture.2013.07.002
Usman., Kamaruddin., & Laining, A. (2016). Pengaruh kadar triptofan pakan terhadap pertumbuhan dan sintasan krablet kepiting bakau (Scylla serrata) selama masa pendederan. Jurnal Riset Akuakultur, 11(3), 259-269. https://doi.org/10.15578/jra.11.3.2016.259-269.
Wolkers, C.P.B., Serra, M., Hoshiba, M.A., & Urbinati, E.C. (2012). Dietary L-tryptophan alters aggression in juvenile matrinxa Brycon amazonicus. Fish Physiology and Biochemestry, 38, 819–827. https://doi.org/10.1007/s10695-011-9569-x
Yudha, R.A., Putri, B., & Diantari, R. (2018). Kesesuaian Perairan untuk Budidaya Ikan Baung (Mystus nemurus) di Sungai Way Kiri Desa Panaragan Kabupaten Tulang Bawang Barat. Jurnal Sains Teknologi Akuakultur, 2(2), 48-57.
Zhang, C., Zhang, Q., Song, X., Pang, Y., Song, Y., Wang, Y., He, L., Jiahuan, L.V., Cheng, Y., & Yang, X. (2019). L-tryptophan promotes the cheliped regeneration of Chinese mitten crab (Eriocheir sinensis) through melatonin, serotonin and dopamine involvement. Aquaculture, 511, 734205. https://doi.org/10.1016/j.aquaculture.2019.734205.
DOI: http://dx.doi.org/10.15578/jra.17.3.2022.133-144
Jurnal Riset Akuakultur is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.