POLA PERTUMBUHAN DAN VARIASI GENETIK BERBASIS DNA MIKROSATELIT DARI TIGA POPULASI IKAN BARAMUNDI Lates calcarifer

Fitriyah Husnul Khotimah, Alimuddin Alimuddin, Dinar Tri Soelistyowati, Sri Nuryati, Harton Arfah, Ketut Sugama, Gusti Ngurah Permana, Sari Budi Moria Sembiring, Haryanti Haryanti

Abstract


Benih ikan baramundi Lates calcarifer diperoleh dari pemijahan alami dengan jumlah induk terbatas sehingga variabilitas pertumbuhan dan kelangsungan hidup antar-batch menjadi tinggi. Penelitian dilakukan untuk menganalisis pertumbuhan dan mengevaluasi variasi genetik ikan kakap putih populasi Australia, Situbondo dan Lampung hasil domestikasi dan dibudidaya di hatcheri skala rumah tangga (HSRT). Sebanyak 10 ekor ikan barramundi dari setiap populasi digunakan untuk analisis variabilitas genetik dengan dua lokus mikrosatelit, yaitu Lca21 dan Lca32. Selanjutnya, data mikrosatelit diolah menggunakan software genetic analysis in excel (GenAlEx 6.51b2). Hasil yang diperoleh menunjukkan bahwa pertumbuhan panjang dan bobot tubuh serta laju pertumbuhan spesifik ikan baramundi dari Australia lebih tinggi dibandingkan dari Situbondo dan Lampung (P<0,05); sedangkan ikan baramundi dari Situbondo dengan Lampung adalah sama (P>0,05). Jumlah alel setiap lokus ikan baramundi berkisar 2-8 alel dan heterozigositas tertinggi dimiliki oleh ikan barramundi asal Situbondo (0,85), diikuti Lampung (0,65) dan paling rendah dari Australia (0,54). Dari hasil riset tersebut dapat disimpulkan bahwa ketiga populasi ikan baramundi hasil domestikasi dan dipeliharan dalam sistem HSRT memenuhi kelayakan untuk digunakan untuk kegiatan hibridisasi atau membentuk populasi awal (sintetis). 

Barramundi seeds, Lates calcarifer are usually sourced from natural spawning using a limited number of broodstock. Therefore, the growth and survival rate of these seeds vary greatly between batches. The research was performed to determine the growth pattern and genetic variations of barramundi seed populations produced from domesticated broodstock sourced from Australia, Situbondo, and Lampung and reared in small-scale hatcheries. Ten individuals of barramundi from each population were used for microsatellite analysis using two microsatellite loci, namely: Lca 21 and Lca 32. The resulted microsatellite data was processed using the genetic analysis available in Excel software (GenAlEx 6.51b2). The results showed that the growth in length and body weight as well as the specific growth rate of barramundi seeds produced from Australia broodstock were higher than that of Situbondo and Lampung (P<0.05) while the later two were similar (P>0.05). The number of microsatellite alleles ranged from 2-8 and the highest heterozygosity was obtained by barramundi seeds produced by Situbondo (0.85), followed by Lampung (0.65), dan Australia (0.54) broodstock. From the results of the research, it can be concluded that the three populations of barramundi fish, which were domesticated and reared in the HSRT system, meet the criteria for use in hybridization program or for forming a synthetic population.


Keywords


heterozigositas; ikan baramundi; mikrosatelit; pertumbuhan; heterozygosity; barramundi; microsatellite; growth

Full Text:

PDF

References


Ackerman, M.W., Hand, B.K., Waples, R.K., Luikart, G., Waples, R.S., Steele, C.A., Garner, B.A., McCane, J., & Campbell, M.R. (2017). Effective number of breeders from sibship reconstruction: empirical evaluations using hatchery steelhead. Evolutionary Applications, 10(2), 146–160. https://doi.org/10.1111/eva.12433

Chew, P.C., Christianus, A., Zuzaidy, J.M., Ina-Salwany, M.Y., Chong, C.M., & Tan, SG. (2021). Microsatellite characterization of Malaysian mahseer (Tor spp.) for improvement of broodstock management and utilization. Animals, 11, 2633, 1-28. https://doi.org/10.3390/ani11092633

Domingos, J.A., Smith-Keune, C., Robinson, N., Loughnan, S., Harrison, P., & Jerry, D.R. (2013). Heritability of harvest growth traits and genotype environment interactions in barramundi, Lates calcarifer (Bloch). Aquaculture, 402, 66-75. https://doi.org/10.1016/j.aquaculture.2013.03.029

Domingos, J.A., Smith-Keune, C., & Jerry, D.R. (2014). Fate of genetic diversity within and between generations and implications for DNA parentage analysis in selective breeding of mass spawners: A case study of commercially farmed barramundi, Lates calcarifer. Aquaculture, 424–425, 174-182. https://doi.org/10.1016/j.aquaculture.2014.01.004

Dusheck J. (2003). Population genetics. In: Genetics, Vol. 3. New York (NY): Macmillan Reference, USA. p. 171-174

Excoffierd, L., & Lischer, H.E. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564–567.

Farias, R.S., Silva B.C.N.R., Nascimento, W.V.G., Silva, G.C., Luz, R.K., Prosdocimi, F., Figueiredo, R.A.C.R., Carvalho, D.C., & Coimbra, M.R.M. (2020). Genetic diversity and aquaculture conservation for a threatened Neotropical catfish. Neotropical Ichthyology, 18(3), e200028. https://doi.org/10.1590/1982-0224-2020-0028

Imron, I., Sunandar, D., & Tahapari, E. (2011). Microsatellite genetic variation in cultured populations of African catfish (Clarias gariepinus) in Indonesia. Indonesian Aquaculture Journal, 6(1), 1-10. http://dx.doi.org/10.15578/iaj.6.1.2011.1-10

Jenkins, S.F., Ishengoma, E., & Rhode, C.A. (2020). A temporal assessment of family composition and genetic diversity in a commercial cohort of Dusky Kob, Argyrosomus japonicus, across the production cycle. Aquaculture, 516, 734640. https://doi.org/10.1016/j.aquaculture.2019.734640

Jerry, D.R. (2014). Biology and Culture of Asian Seabass. CRC Press. (p 1-314)

Laitte, M.H., Haser, T.F., Jaya, Nurdin, M.S., Azmi, F., Radona, D., Prihadi, T.H., Masriah, D., & Darsiani. (2022). Kinerja pertumbuhan dan respons fisiologis benih ikan tambra, Tor tambroides pada suhu pemeliharaan berbeda. Jurnal Riset Akuakultur, 16(4), 211-219. http://doi.org/10.15578/jra.16.4.2021.211-219

Loughnan, S.R., Domingos, J.A, Smith-Keune, C, Forrester, J.P, Jerry, D.R, Beheregaray, L.B, & Robinson, N.A. (2013). Broodstock contribution after mass spawning and size grading in barramundi (Lates calcarifer, Bloch), Aquaculture, 404–405, 139–149. http://dx.doi.org/10.1016/j.aquaculture.2013.04.014

Loughnan, S.R., Smith-Keune, C., Beheregaray, L.B., Robinson, N.A., & Jerry, D.R. (2019). Population genetic structure of barramundi (Lates calcarifer) across the natural distribution range in Australia informs fishery management and aquaculture practices. Marine and Freshwater Research, 70, 1533-1542. https://doi.org/10.1071/MF18330.

Loukovitis, D., Ioannidi, B., Chatziplis, D., Kotoulas, G., Magoulas, A., & Tsigenopoulos, C.S. (2015). Loss of genetic variation in Greek hatchery populations of the European sea bass (Dicentrarchus labrax L.) as revealed by microsatellite DNA analysis. Mediterranean Marine Science, 16(1), 197-200. http://dx.doi.org/10.12681/mms.1033

Noble, T.H., Smith-Keune, C., & Jerry, D.R. (2014). Genetic investigation of the large-scale escape of a tropical fish, barramundi Lates calcarifer, from a sea-cage facility in northern Australia. Aquaculture Environment Interactions, 5, 173–183. https://doi.org/10.3354/aei00106

Peakall, R. & Smouse, P.E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28, 2537-2539. https://doi.org/10.1093/bioinformatics/bts460

Rayes, R.D., Sutresna, I.W., Diniarti, N., & Supii, A.I. (2013). Effect of changes in salinity on growth and review white cap fish (Lates calcarifer Bloch). Jurnal Kelautan: Indonesian Journal of Marine Science and Technology, 6(1), 47-56. http://doi.org/10.21107/jk.v6i1.832.

Senanan, W., Pechsiri, J., Sonkawe, S., Na-Nakom, U., Sean-In, N., & Yashiro, R. (2015). Genetic relatedness and differentiation of hatchery populations of Asian seabass (Lates calcarifer) (Bloch, 1790) broodstock in Thailand inferred from microsatellite genetic markers. Aquaculture Research, 46, 2897–2912. https://doi.org/10.1111/are.12442

Syahputra, K., Ariyanto, D., & Hayuningtyas, E.P. (2016). Keragaman genetik ikan mas (Cyprinus carpio) varietas rajadanu tahan koi herpervirus generasi F0 dan F1 menggunakan tiga lokus mikrosatelit. Jurnal Riset Akuakultur, 11(1), 59-66. http://dx.doi.org/10.15578/jra.11.1.2016.59-66.

Windarto, S., Hastuti, S., Subandiyono, Nugroho, R.A., & Sarjito. (2019). Performa pertumbuhan ikan kakap putih (Lates calcarifer Bloch, 1790) yang dibudidayakan dalam sistem keramba jarring apung (KJA). Sains Akuakultur Tropis, 3(1), 56-60. http://doi.org/10.14710/sat.v3i1.4195.

Yue, G.H., Li Y., Chao, T.M., Chou, R. & Orban, L. (2002). Novel microsatellites from Asian sea bass (Lates calcarifer) and their application to broodstock analysis. Marine Biotechnology, 4, 503–11. https://doi.org/10.1007/s10126-002-0037-6.

Zhu, Z.Y., Wang, C.M., Lo, L.C., Lin, G., Feng, F., Tan, J., Chou, R., Lim, H.S., Orban, L., & Yue, G.H. (2010). A standard panel of microsatellites for Asian seabass (Lates calcarifer). Animal Genetic, 41, 208–212 https://doi.org/10.1111/j.1365-2052.2009.01973.x




DOI: http://dx.doi.org/10.15578/jra.18.1.2023.49-59


Lisensi Creative Commons
Jurnal Riset Akuakultur is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats
p-ISSN 1907-6754
e-ISSN 2502-6534