GROWTH PERFORMANCES AND INTESTINAL BACTERIAL POPULATIONS OF PACIFIC WHITE SHRIMP (Penaeus vannamei) FED WITH DIFFERENT DIETARY PREBIOTICS-SUPPLEMENTED FEED

Diah Ayu Satyari Utami, Wahyu Wahyu, Liga Insani, I Gusti Putu Gede Rumayasa Yudana, Teguh Harijono

Abstract


Prebiotic applications in aquaculture are mainly given in the form of single or mixed prebiotics. A number of studies compared the effects of different doses or frequencies of a single prebiotic application. However, studies comparing different prebiotics in order to find the most effective ones for certain farmed species are limited. This study aimed to evaluate the effects of different dietary prebiotics on the growth performances and intestinal bacterial populations of Pacific white shrimp (Penaeus vannamei). Four treatments with triplicates were arranged in a completely randomized design (CRD). The treatments consisted of feed supplemented with different dietary prebiotics for Pacific white shrimp, including control (without dietary prebiotic), 0.5% honey (v/w), 0.5% mannan-oligosaccharide (MOS) (w/w), and 0.5% inulin (w/w). Pacific white shrimp (1.59 ± 0.12 g) were randomly stocked in 12 glass tanks (60 x 30 x 40 cm3) with a stocking density of 15 shrimp per tank. The shrimp were fed the experimental feed to apparent satiation four times daily for 30 days. Growth parameters observed consisted of final weight, specific growth rate (SGR), feed conversion ratio (FCR), survival of Pacific white shrimp, total bacterial count, total Vibrio count, and dominance of Vibrio in the intestine of experimental shrimp. Dietary prebiotics improve the growth performances of Pacific white shrimp. The highest growth performances were found in the shrimp treated with dietary honey. The improvement in growth performance may be due to the ability of honey to boost the proliferation of beneficial bacteria in the intestines of Pacific white shrimp.

Pemanfaatan prebiotik dibagi menjadi dua kelompok yang terdiri atas prebiotik tunggal dan prebiotik campuran. Banyak penelitian sebelumnya yang berfokus pada perbandingan dosis atau frekuensi satu jenis prebiotik tetapi tidak membandingkan jenis prebiotik yang berbeda untuk menemukan prebiotik yang paling efektif untuk spesies tertentu. Penelitian ini bertujuan untuk mengevaluasi pengaruh pemberian pakan prebiotik yang berbeda terhadap kinerja pertumbuhan dan populasi bakteri usus udang vaname (Penaeus vannamei). Penelitian ini dilakukan melalui rancangan acak lengkap (RAL) dengan empat perlakuan dan tiga ulangan. Perlakuan yang diberikan dalam penelitian ini terdiri atas pemberian pakan prebiotik yang berbeda pada udang vaname meliputi kontrol (tanpa prebiotik), madu 0,5% (v/b), mannan-oligosakarida (MOS) 0,5% (b/b), dan inulin 0,5% (b/b). Udang vaname (1,59 ± 0,12 g) ditebar secara acak dalam 12 akuarium kaca (60 x 30 x 40 cm3) dengan padat tebar 15 udang per akuarium. Udang diberi pakan percobaan sampai kenyang empat kali sehari selama 30 hari. Parameter yang diamati terdiri atas bobot akhir, laju pertumbuhan spesifik (LPS), rasio konversi pakan (RKP), kelangsungan hidup udang vaname, jumlah bakteri total, jumlah Vibrio total, dan dominasi Vibrio dalam usus udang percobaan. Pemberian pakan prebiotik meningkatkan kinerja pertumbuhan udang vaname. Kinerja pertumbuhan tertinggi ditemukan pada udang yang diberi madu. Peningkatan kinerja pertumbuhan ini mungkin disebabkan oleh kemampuan madu dalam meningkatkan perkembangbiakan bakteri menguntungkan di usus udang vaname.


Keywords


growth; honey; inulin; MOS; Pacific white shrimp; prebiotics; inulin; madu; MOS; pertumbuhan; prebiotik; udang vaname

Full Text:

PDF

References


Abdel-Latif, H. M. R., Yilmaz, E., Dawood, M. A. O., Ringø, E., Ahmadifar, E., & Yilmaz, S. (2022). Shrimp vibriosis and possible control measures using probiotics, postbiotics, prebiotics, and synbiotics: A review. Aquaculture, 551, 737951. https://doi.org/10.1016/j.aquaculture.2022.737951

Abdel-Tawwab, M. (2016). Feed supplementation to freshwater fish: Experimental approaches. LAP LAMBERT Academic Publishing.

Al-Sheraji, S. H., Ismail, A., Manap, M. Y., Mustafa, S., Yusof, R. M., & Hassan, F. A. (2013). Prebiotics as functional foods: A review. Journal of Functional Foods, 5(4), 1542-1553. https://doi.org/10.1016/j.jff.2013.08.009

Bossier, P., De Schrijver, P., Defoirdt, T., Ruwandeepika, H. A. D., Natrah, F., Ekasari, J., Toi, H., Nhan, D., Tinh, N., Pande, G., Karunasagar, I., & Van Stappen, G. (2016). Microbial community management in aquaculture. Procedia Food Science, 6, 37-39. https://doi.org/10.1016/j.profoo.2016.02.007

Cornejo-Granados, F., Gallardo-Becerra, L., Leonardo-Reza, M., Ochoa-Romo, J. P., & Ochoa-Leyva, A. (2018). A meta-analysis reveals the environmental and host factors shaping the structure and function of the shrimp microbiota. PeerJ, 6, e5382. https://doi.org/10.7717/peerj.5382

Cornejo-Granados, F., Lopez-Zavala, A. A., Gallardo-Becerra, L., Mendoza-Vargas, A., Sánchez, F., Vichido, R., Brieba, L. G., Viana, M. T., Sotelo-Mundo, R. R., & Ochoa-Leyva, A. (2017). Microbiome of Pacific whiteleg shrimp reveals differential bacterial community composition between wild, aquacultured and AHPND/EMS outbreak conditions. Scientific Reports, 7, 11783. https://doi.org/10.1038/s41598-017-11805-w

Davani-Davari, D., Negahdaripour, M., Karimzadeh, I., Seifan, M., Mohkam, M., Masoumi, S. J., Barenjian, A., & Ghasemi, Y. (2019). Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods, 8(3), 92. https://doi.org/10.3390/foods8030092

Duan, Y., Wang, Y., Liu, Q., Dong, H., Li, H., Xiong, D., & Zhang, J. (2019). Changes in the intestine microbial, digestion and immunity of Litopenaeus vannamei in response to dietary resistant starch. Scientific Reports, 9, 6464. https://doi.org/10.1038/s41598-019-42939-8

Ebrahimi, G., Ouraji, H., Khalesi, M.K., Sudagar, M., Barari, A., Dangesaraki, M. Z. & Khalili, K. H. J. (2012). Effects of a prebiotic, Immunogen®, on feed utilization, body composition, immunity and resistance to Aeromonas hydrophila infection in the common carp Cyprinus carpio (Linnaeus) fingerlings. Journal of Animal Physiology and Animal Nutrition, 96(4), 591-599. https://doi.org/10.1111/j.1439-0396.2011.01182.x

Fuandila, N. N., Widanarni, & Yuhana, M. (2020). Growth performance and immune response of prebiotic honey fed Pacific white shrimp Litopenaeus vannamei to Vibrio parahaemolyticus infection. Journal of Applied Aquaculture, 32(3), 221-235. https://doi.org/10.1080/10454438.2019.1615593

Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology, 14, 491-502. https://doi.org/10.1038/nrgastro.2017.75

Hoseinifar, S. H., Khalili, M., Rufchaei, R., Raeisi, M., Attar, M., Cordero, H., & Esteban, M. Á. (2015). Effects of date palm fruit extracts on skin mucosal immunity, immune related genes expression and growth performance of common carp (Cyprinus carpio) fry. Fish & Shellfish Immunology, 47(2), 706-711. https://doi.org/10.1016/j.fsi.2015.09.046

Hu, X., Yang, H. L., Yan, Y. Y., Zhang, C. X., Ye, J. D., Lu, K. L., Hu, L. H., Zhang, J. J., Ruan, L., & Sun, Y. Z. (2019). Effects of fructooligosaccharide on growth, immunity and intestinal microbiota of shrimp (Litopenaeus vannamei) fed diets with fish meal partially replaced by soybean meal. Aquaculture Nutrition, 25(1), 194-204. https://doi.org/10.1111/anu.12843

Jory, D. (2023). Annual farmed shrimp production survey: A slight decrease in production reduction in 2023 with hopes for renewed growth in 2024. Responsible Seafood Advocate. Global Seafood Alliance.

Koh, A., De Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell, 165(6), 1332-1345. https://doi.org/10.1016/j.cell.2016.05.041

Levy, M., Blacher, E., & Elinav, E. (2017). Microbiome, metabolites and host immunity. Current Opinion in Microbiology, 35, 8-15. https://doi.org/10.1016/j.mib.2016.10.003

Li, W., Wang, K., Sun, Y., Ye, H., Hu, B., & Zeng, X. (2015). Influences of structures of galactooligosaccharides and fructooligosaccharides on the fermentation in vitro by human intestinal microbiota. Journal of Functional Food, 13, 158-168. https://doi.org/10.1016/j.jff.2014.12.044

Li, Y., Liu, H., Dai, X., Li, J., & Ding, F. (2018). Effects of dietary inulin and mannan oligosaccharide on immune related genes expression and disease resistance of Pacific white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology, 76, 78-92. https://doi.org/10.1016/j.fsi.2018.02.034

Li, Y., Yuan, W., Zhang, Y., Liu, H., & Dai, X. (2021). Single or combined effects of dietary arabinoxylan-oligosaccharide and inulin on growth performance, gut microbiota, and immune response in Pacific white shrimp Litopenaeus vannamei. Journal of Oceanology and Limnology, 39, 741-754. https://doi.org/10.1007/s00343-020-9083-z

Li, Z., Tran, N. T., Ji, P., Sun, Z., Wen, X., & Li, S. (2019). Effects of prebiotic mixtures on growth performance, intestinal microbiota and immune response in juvenile chu’s croaker, Nibea coibor. Fish & Shellfish Immunology, 89, 564-573. https://doi.org/10.1016/j.fsi.2019.04.025

Mohammadi, G., Hafezieh, M., Karimi, A. K., Azra, M. N., Doan, H. V., Tapingkae, W., Abdelrahman, H. A., & Dawood, M. A. O. (2022). The synergistic effects of plant polysaccharide and Pediococcus acidilactici as a symbiotic additive on growth, antioxidant status, immune response, and resistance of Nile tilapia (Oreohcromis niloticus) against Aeromonas hydrophila. Fish & Shellfish Immunology, 120, 304-313. https://doi.org/10.1016/j.fsi.2021.11.028

Mohan, A., Quek, S.-Y., Gutierrez-Maddox, N., Gao, Y., & Shu, Q. (2017). Effect of honey in improving the gut microbial balance. Food Quality and Safety, 1(2), 107-115. https://doi.org/10.1093/fqsafe/fyx015

Molan, P. C. (1992). The antibacterial activity of honey: 1. The nature of the antibacterial activity. Bee World, 73(1), 5-28. https://doi.org/10.1080/0005772X.1992.11099109

Munir, M. B., Hashim, R., Manaf, M. S. A., & Nor, S. A. M. (2016). Dietary prebiotics and probiotics influence the growth performance, feed utilization, and body indices of snakehead (Channa striata) fingerlings. Tropical Life Sciences Research, 27(2), 111-125. https://doi.org/10.21315/tlsr2016.27.2.9

Ochoa-Romo, J. P., Cornejo-Granados, F., Lopez-Zavala, A. A., Viana, M. T., Sánchez, F., Gallardo-Becerra, L., Luque-Villegas, M., Valdez-López, Y., Sotelo-Mundo, R. R., Cota-Huízar, A., López_Munguia, A., & Ochoa-Leyva, A. (2022). Agavin induces beneficial microbes in the shrimp microbiota under farming conditions. Scientific Reports, 12, 6392. https://doi.org/10.1038/s41598-022-10442-2

Prastiti, L. A., Yuhana, M., & Widanarni. (2018). Effectivity of prebiotic mannan oligosaccharides as the immunity enhancer and growth response on whiteleg shrimp Litopenaeus vannamei against white spot disease. Jurnal Akuakultur Indonesia, 17(1), 81-86. https://doi.org/10.19027/jai.17.1.81-86

Safari, O., Shahsavani, D., Paolucci, M., & Atash, M. M. S. (2014). Single or combined effects of fructo- and mannan oligosaccharide supplements on the growth performance, nutrient digestibility, immune response and stress resistance of juvenile narrow clawed crayfish, Astacus leptodactylus Eschscholtz, 1823. Aquaculture, 432, 192-203. https://doi.org/10.1016/j.aquaculture.2014.05.012

Sang, H. M., Kien, N. T., & Thanh Thuy, N. T. (2014). Effect of dietary mannan oligosaccharide on growth, survival, physiological, immunological and gut morphological conditions of black tiger prawn (Penaeus monodon Fabricius 1798). Aquaculture Nutrition, 20(3), 341-348. https://doi.org/10.1111/anu.12083

Schell., K. R., Fernandes, K. E., Shanahan, E., Wilson, I., Blair, S. E., Carter, D. A., & Cokcetin, N. N. (2022). The potential of honey as a prebiotic food to re-engineer the gut microbiome toward a healthy state. Frontiers in Nutrition, 9, 957932. https://doi.org/10.3389/fnut.2022.957932

Shoaei, R., Akrami, R., Ghobadi, S., & Mansour, M. R. (2015). Effect of dietary of prebiotic mannan oligosaccharide and β-1,3 glucan on growth performance, survival, body composition and serum lysozyme activity in rainbow trout (Oncorhynchus mykiss) fingerling. Journal of Marine Biology, 7(2), 45-56.

Song, S. K., Beck, B. R., Kim, D., Park, J., Kim, J., Kim, H. D., & Ringø, E. (2014). Prebiotics as immunostimulants in aquaculture: A review. Fish & Shellfish Immunology, 40(1), 40-48. https://doi.org/10.1016/j.fsi.2014.06.016

Stentiford, G. D., Sritunyalucksana, K., Flegel, T. W., Williams, B. A. P., Withyachumnarnkul, B., Itsathitphaisarn, O., & Bass, D. (2017). New paradigms to help solve the global aquaculture disease crisis. Plos Pathogens, 13(2), e1006160. https://doi.org/10.1371/journal.ppat.1006160

Vadstein, O., Bergh, Ø., Gatesoupe, F. J., Galindo-Villegas, J., Mulero, V., Picchietti, S., Scapigliati, G., Makridis, P., Olsen, Y., Dierckens, K., Defoirdt, T., Boon, N., De Schryver, P., & Bossier, P. (2013). Microbiology and immunology of fish larvae. Reviews in Aquaculture, 5(1), S1-S25. https://doi.org/10.1111/j.1753-5131.2012.01082.x

Wee, W., Hamid, N. K. A., Mat, K., Khalif, R. I. A. R., Rusli, N. D., Rahman, M. M., Kabir, M. A., & Wei, L. S. (2024). The effects of mixed prebiotics in aquaculture: A review. Aquaculture and Fisheries, 9(1), 28-34. https://doi.org/10.1016/j.aaf.2022.02.005

Widanarni, Gustilatov, M., Sukenda, & Utami, D. A. S. (2019a). Utilization of honey to improve immune response and resistance of Pacific white shrimp (Litopenaeus vannamei) against white spot syndrome virus infection. Jurnal Riset Akuakultur, 14(1), 59-69. http://dx.doi.org/10.15578/jra.14.1.2019.59-69

Widanarni, Putri, F. N., & Rahman. (2019b). Growth performance of white shrimp Litopenaeus vananmei fed with various dosages of prebiotic honey. IOP Conference Series: Earth and Environmental Science, 278, 012079. https://doi.org/10.1088/1755-1315/278/1/012079

Widanarni, Rahmi, D., Gustilatov, M., Sukenda, & Utami, D. A. S. (2020). Immune responses and resistance of white shrimp Litopenaeus vannamei administered Bacillus sp. NP5 and honey against white spot syndrome virus infection. Jurnal Akuakultur Indonesia, 19(2), 118-130. https://doi.org/10.19027/jai.19.2.118-130

Yilmaz, S., Yilmaz, E., Dawood, M. A. O., Ringø, E., Ahmadifar, E., & Abdel-Latif, H. M. R. (2022). Probiotics, prebiotics, and synbiotics used to control vibriosis in fish: A review. Aquaculture, 547, 737514. https://doi.org/10.1016/j.aquaculture.2021.737514

Yousefian, M., & Amiri, M. S. (2009). A review of the use of prebiotic in aquaculture for fish and shrimp. African Journal of Biotechnology, 8(25), 7313-7318.

Zhou, L., Li, H., Qin, J.G., Wang, X., Chen, L., Xu, C., & Li, E. (2020). Dietary prebiotic inulin benefits on growth performance, antioxidant capacity, immune response and intestinal microbiota in Pacific white shrimp (Litopenaeus vannamei) at low salinity. Aquaculture, 518, 734847. https://doi.org/10.1016/j.aquaculture.2019.734847




DOI: http://dx.doi.org/10.15578/jra.19.1.2024.1-13


Lisensi Creative Commons
Jurnal Riset Akuakultur is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats
p-ISSN 1907-6754
e-ISSN 2502-6534