IMMUNOSTIMULATORY EFFECTS OF ULVAN ON TRYPSIN-MEDIATED PROTEIN DIGESTION IN THE GUT OF PACIFIC WHITELEG SHRIMP (Litopenaeus vannamei)

Nuril Azhar, Ervia Yudiati, Ambariyanto Ambariyanto, Rabia Alghazeer, Agus Trianto

Abstract


Litopenaeus vannamei has emerged in the aquaculture industry. Production consistency, nutrition, and disease management play critical roles, particularly the digestive enzymes such as trypsin. This study assesses Ulvan, an immunostimulant from Ulva lactuca, on shrimp trypsin activity. Trypsin has been found to significantly enhance the activity of hemocyanin phenoloxidase, a crucial component of humoral immunity. This study aims to evaluate the potency of ulvan related to trypsin as an immunostimulant agent, extracted from Ulva sp.  Ulvan, extracted using various methods (P-HWE, O-HWE, P-A-HWE, and O-A-HWE), was evaluated using different doses of (0 g kg-1 (Control), 0.75 g kg-1 (ULV-0.75), 1.50 g kg-1 (ULV-1.50), and 3.00 g kg-1 (ULV-3.00) of feed). The O-A-HWE exhibited the fastest and highest increase in trypsin activity on day 4, surpassing the control on days 2, 3, 7, and 8. The P-HWE, O-HWE, and P-A-HWE also showed significant changes in trypsin activity compared to the control on specific days. Meanwhile, trypsin activity in Ulvan-fed shrimp did not significantly differ from the control on days 0 and 1. The differences emerged on day 2 and 3, notably between ULV-1.50 g kg−1 and ULV-0.75 g kg−1. The ULV-3.00 g kg−1 showed no significant difference from ULV-1.50 g kg−1. O-A-HWE demonstrated significant differences in trypsin activity compared to other Ulvan extracts, suggesting its potential to enhance shrimp health.

Litopenaeus vannamei memiliki peran yang besar dalam industri akuakultur. Konsistensi dalam produksi, nutrisi, dan pengelolaan terhadap penyakit merupakan bagian yang sangat penting, terutama enzim pencernaan, di antaranya tripsin. Tripsin berfungsi untuk meningkatkan fenoloksidase hemosianin, yang peranannya penting untuk kekebalan. Studi ini mengevaluasi Ulvan, yaitu bahan yang bersifat imunostimulan dari Ulva sp., terhadap aktivitas tripsin udang. Ulvan, diekstraksi menggunakan berbagai metode (P-HWE, O-HWE, P-A-HWE, dan O-A-HWE), dievaluasi menggunakan perlakuan dosis yang berbeda (0 g kg-1 (Kontrol), 0,75 g kg-1 (ULV-0,75), 1,50 g kg-1 (ULV-1,50), dan 3,00 g kg-1 (ULV-3,00) pada pemeliharaan udang vaname selama 10 hari. O-A-HWE menunjukkan peningkatan aktivitas tripsin tercepat dan tertinggi pada hari ke-4, melebihi kontrol pada hari ke-2, 3, 7, dan 8. P-HWE, O-HWE, dan P-A-HWE juga menunjukkan perubahan signifikan dalam aktivitas tripsin dibandingkan dengan kontrol pada hari-hari tertentu. Sementara aktivitas tripsin dalam udang yang diberi Ulvan tidak berbeda secara signifikan dari kontrol pada hari ke-0 dan 1, perbedaan mulai terlihat pada hari ke-2 dan 3, terutama antara ULV-1,50 g kg−1 dan ULV-0,75 g kg−1. ULV-3,00 g kg−1 tidak menunjukkan perbedaan yang signifikan dari ULV-1,50 g kg−1. O-A-HWE menunjukkan perbedaan signifikan dalam aktivitas tripsin dibandingkan dengan ekstrak Ulvan lainnya, sehingga berpotensi dalam meningkatkan kesehatan udang.


Keywords


immunostimulant; shrimp; trypsin activity; ulvan; aktivitas tripsin; imunostimulan; udang; Ulvan

Full Text:

PDF

References


Aguiñaga-Cruz, J. A., Sainz-Hernández, J. C., García-Rodríguez, L. D., García-Ulloa, M., García-Gutiérrez, C., & Montoya-Mejía, M. (2019). Trypsin polymorphism and modulation in Penaeus vannamei (Boone, 1931): a review. Latin american journal of aquatic research, 47, 723-732.

Azhar, N., & Yudiati, E. (2023). Outbreak simulation of Litopenaeus vannamei recovery rate with oral alginate and Spirulina diet supplementation against Vibrio parahaemolyticus AHPND. Aquaculture International, 31(3), 1659-1676. https://doi.org/10.1007/s10499-023-01050-6

Badan Standardisasi Nasional. (2014). Udang vannamei (Litopaneus vannamei, Boone 1931). Bagian 1: Produksi induk model indoor. SNI 8037.1: 2014. Badan Standardisasi Nasional.

Balasubramanian, N., Toubarro, D., & Simões, N. (2010). Biochemical study and in vitro insect immune suppression by a trypsin-like secreted protease from the nematode Steinernema carpocapsae. Parasite Immunology, 32(3), 165-175. https://doi.org/10.1111/j.1365-3024.2009.01172.x

Chen, B.-J., Shi, M.-J., Cui, S., Hao, S.-X., Hider, R. C., & Zhou, T. (2016a). Improved antioxidant and anti-tyrosinase activity of polysaccharide from Sargassum fusiforme by degradation. International Journal of Biologcal Macromolecules, 92, 715-722. https://doi.org/10.1016/j.ijbiomac.2016.07.082

Chen, Y. Y., Chen, J. C., Kuo, Y. H., Lin, Y. C., Chang, Y. H., Gong, H. Y., & Huang, C. L. (2016b). Lipopolysaccharide and β-1,3-glucan-binding protein (LGBP) bind to seaweed polysaccharides and activate the prophenoloxidase system in white shrimp Litopenaeus vannamei. Developmental & Comparative Immunology, 55, 144-151. https://doi.org/10.1016/j.dci.2015.10.023

Cindana Mo’o, F. R., Wilar, G., Devkota, H. P., & Wathoni, N. (2020). Ulvan, a polysaccharide from macroalga Ulva sp.: A review of chemistry, biological activities and potential for food and biomedical applications. Applied Sciences, 10(16), 5488. https://doi.org/10.3390/app10165488

Febriani, D., Marlina, E., & Oktaviana, A. (2018). Total haemocytes of Pacific white shrimp (Litopenaeus vannamei) cultured at salinity of 10 ppt in various stocking density. Journal of Aquaculture Science, 3(1), 1-8. https://doi.org/10.31093/joas.v3i1.35

Fletcher, R. L. (1996). The occurrence of “green tides”— a review. In W. Schramm & P. H. Nienhuis (Eds.), Marine benthic vegetation: Recent changes and the effects of eutrophication (pp. 7-43). Springer Berlin Heidelberg.

Food and Agriculture Organization. (2022). The state of world fisheries and aquaculture 2022. Towards Blue Transformation. Food and Agriculture Organization. https://doi.org/10.4060/cc0461en

Gäde, G., & Goldsworthy, G. J. (2003). Insect peptide hormones: a selective review of their physiology and potential application for pest control. Pest Management Science, 59(10), 1063-1075. https://doi.org/10.1002/ps.755

Hernández, D. P., Abdelrahman, H. A., Galkanda-Arachchige, H. S. C., Kelly, A. M., Butts, I. A. E., Davis, D. A., Beck, B. H., & Roy, L. A. (2023). Evaluation of aqueous magnesium concentration on performance of Pacific white shrimp (Litopenaeus vannamei) cultured in low salinity water of West Alabama, USA. Aquaculture, 565, 739133. https://doi.org/10.1016/j.aquaculture.2022.739133

Khantaphant, S., & Benjakul, S. (2010). Purification and characterization of trypsin from the pyloric caeca of brownstripe red snapper (Lutjanus vitta). Food Chemistry, 120(3), 658-664. https://doi.org/10.1016/j.foodchem.2009.09.098

Kidgell, J. T., Magnusson, M., de Nys, R., & Glasson, C. R. K. (2019). Ulvan: A systematic review of extraction, composition and function. Algal Research, 39, 101422. https://doi.org/10.1016/j.algal.2019.101422

Kim, S. G., Jung, B. W., & Kim, H. (2011). Hemocyanin-derived phenoloxidase activity with broad temperature stability extending into the cold environment in hemocytes of the hair crab Erimacrus isenbeckii. Comparative Biochemistry and Physiology Part B: Biochemisrty and Molecular Biology, 159(2), 103-108. https://doi.org/10.1016/j.cbpb.2011.02.004

Kumlu, M., & Jones, D. A. (1995). The effect of live and artificial diets on growth, survival, and trypsin activity in larvae of Penaeus indicus. Journal of the World Aquaculture Society, 26(4), 406-415. https://doi.org/10.1111/j.1749-7345.1995.tb00836.x

Lahaye, M., & Robic, A. (2007). Structure and functional properties of Ulvan, a polysaccharide from green seaweeds. Biomacromolecules, 8(6), 1765-1774. https://doi.org/10.1021/bm061185q

Lemos, D., Ezquerra, J. M., & Garcia-Carreño, F. L. (2000). Protein digestion in penaeid shrimp: digestive proteinases, proteinase inhibitors and feed digestibility. Aquaculture, 186(1), 89-105. https://doi.org/10.1016/S0044-8486(99)00371-3

Li, C., Wang, F., Aweya, J. J., Yao, D., Zheng, Z., Huang, H., Li, S., & Zhang, Y. (2018). Trypsin of Litopenaeus vannamei is required for the generation of hemocyanin-derived peptides. Developmental & Comparative Immunology, 79, 95-104. https://doi.org/10.1016/j.dci.2017.10.015

Liu, Z.-Y., Yang, H.-L., Yan, Y.-Y., Seerengaraj, V., Zhang, C.-X., Ye, J.-d., Lu, K.-L., & Sun, Y.-Z. (2021). Supplementation of tributyrin, alone and in combination with fructooligosaccharide in high soybean meal diets for shrimp (Litopenaeus vannamei): Effects on growth, innate immunity and intestinal morphology. Aquaculture Nutrition, 27(2), 592-603. https://doi.org/10.1111/anu.13209

Mohan, K., Ravichandran, S., Muralisankar, T., Uthayakumar, V., Chandirasekar, R., Seedevi, P., Abirami, R. G., & Rajan, D. K. (2019). Application of marine-derived polysaccharides as immunostimulants in aquaculture: A review of current knowledge and further perspectives. Fish & Shellfish Immunology, 86, 1177-1193. https://doi.org/10.1016/j.fsi.2018.12.072

Patel, S. (2017). A critical review on serine protease: Key immune manipulator and pathology mediator. Allergologia et Immunopathologia, 45(6), 579-591. https://doi.org/10.1016/j.aller.2016.10.011

Peng, Y., Chen, S., Ji, H., & Liu, S. (2019). Localization of trypsin-like protease in postmortem tissue of white shrimp (Litopenaeus vannamei) and its effect in muscle softening. Food Chemistry, 290, 277-285. https://doi.org/10.1016/j.foodchem.2019.03.147

Qiao, J., Du, Z., Zhang, Y., Du, H., Guo, L., Zhong, M., Cao, J., & Wang, X. (2011). Proteomic identification of the related immune-enhancing proteins in shrimp Litopenaeus vannamei stimulated with vitamin C and Chinese herbs. Fish & Shellfish Immunology, 31(6), 736-745. https://doi.org/10.1016/j.fsi.2011.07.005

Secombes, C. J. (1994). Enhancement of fish phagocyte activity. Fish & Shellfish Immunology. 4(6), 421-436. https://doi.org/10.1006/fsim.1994.1038

Senphan, T., & Benjakul, S. (2012). Compositions and yield of lipids extracted from hepatopancreas of Pacific white shrimp (Litopenaeus vannamei) as affected by prior autolysis. Food Chemistry, 134(2), 829-835. https://doi.org/10.1016/j.foodchem.2012.02.188

Song, H.-L., Tan, B.-P., Chi, S.-Y., Liu, Y., Chowdhury, M. A. K., & Dong, X.-H. (2017). The effects of a dietary protease-complex on performance, digestive and immune enzyme activity, and disease resistance of Litopenaeus vannamei fed high plant protein diets. Aquaculture Research, 48(5), 2550-2560. https://doi.org/10.1111/are.13091

Tabarsa, M., You, S., Dabaghian, E. H., & Surayot, U. (2018). Water-soluble polysaccharides from Ulva intestinalis: Molecular properties, structural elucidation and immunomodulatory activities. Journal of Food and Drug Analysis, 26(2), 599-608. https://doi.org/10.1016/j.jfda.2017.07.016

Tang, L., Hatab, S., Yan, J., Miao, W., Nyaisaba, B. M., Piao, X., Zheng, B., & Deng, S. (2022). Changes in biochemical properties and activity of trypsin-like protease (Litopenaeus vannamei) treated by atmospheric cold plasma (ACP). Foods, 11(9). https://doi.org/10.3390/foods11091277

Wei, Y., Wang, X., Xie, F., Shen, H., Gao, W., Zhang, W., & Mai, K. (2022). Influences of replacing dietary fish meal by Antarctic krill meal on growth performance, immunity and muscle quality of white shrimp Litopenaeus vannamei. Aquaculture Reports, 25, 101256. https://doi.org/10.1016/j.aqrep.2022.101256

Yudiati, E., Isnansetyo, A., Murwantoko, Ayuningtyas, Triyanto, & Handayani, C. R. (2016). Innate immune-stimulating and immune genes up-regulating activities of three types of alginate from Sargassum siliquosum in Pacific white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology, 54, 46. https://doi.org/10.1016/j.fsi.2016.03.022

Yudiati, E., Isnansetyo, A., Murwantoko, Triyanto, & Handayani, C. R. (2019). Alginate from Sargassum siliquosum simultaneously stimulates innate immunity, upregulates immune genes, and enhances resistance of Pacific white shrimp (Litopenaeus vannamei) against white spot syndrome virus (WSSV). Marine Biotechnology, 21(4), 503. https://doi.org/10.1007/s10126-019-09898-7

Yudiati, E., Pringgenies, D., Djunaedi, A., Arifin, Z., & Sudaryono, A. (2018). Free radicals scavenging activities of low molecular weight sodium alginate (LMWSA) from Sargassum polycystum, produced by thermal treatment. Aquacultura Indonesiana, 19(1), 21-27. https://doi.org/10.21534/ai.v19i1.121

Zhang, X., Tian, X., Jiang, W., Zhao, K., Dong, S., Cai, Y., & Liang, J. (2021). Growth performance, non-specific immunity and Vibrio parahaemolyticus resistance of Pacific white shrimp, Litopenaeus vannamei, in response to various microbial-derived additives. Aquaculture Nutrition, 27(3), 666-678. https://doi.org/10.1111/anu.13213




DOI: http://dx.doi.org/10.15578/jra.19.1.2024.45-56


Lisensi Creative Commons
Jurnal Riset Akuakultur is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats
p-ISSN 1907-6754
e-ISSN 2502-6534