PENINGKATAN PERTUMBUHAN MIKROALGA Chaetoceros ceratosporum DAN Nannochloropsis oculata MENGGUNAKAN STRAIN BAKTERI TERSELEKSI PADA KULTUR SKALA TERKONTROL

Ni Nengah Suriadyani, Luh Yuliani Dewi, Kadek Mas Tantra, I Putu Arta Sudarsana, Kadek Ardika, Wiwin Adiwinata, Husen Husaeni, I Ketut Agus Sudarmayasa, Ahmad Muzaki

Abstract


Sejalan dengan peningkatan produksi budidaya perikanan, maka diperlukan intensifikasi produksi benih ikan atau udang. Di antara permasalahan yang dihadapi pembenih adalah ketersedian pakan alami (microalgae) yang memadai dan kontinu baik kualitas maupun kuantitas selama pemeliharaan larva. Upaya meningkatkan produksi mikroalga melalui pendekatan hubungan koeksistensi dan pemacuan pertumbuhan dengan memanfaatkan peran bakteri yang menguntungkan perlu dilakukan. Tujuan penelitian ini adalah untuk mendapatkan dan mengetahui efektivitas strain bakteri terseleksi yang mempunyai kemampuan menstimulasi pertumbuhan dalam meningkatkan pertumbuhan mikroalga pada kultur skala terkontrol. Pada penelitian ini digunakan mikroalga Chaetoceros ceratosporum dan Nannochloropsis oculata. Bakteri yang berasosiasi dalam kultur tersebut diisolasi, dilakukan screening, uji aktivitas sintesis enzimatik, karakterisasi, identifikasi, kultur, dan re-inokulasi pada kultur mikroalga.  Hasil yang diperoleh ada tujuh isolat bakteri dari C. ceratosporum dan delapan isolat dari N. oculata. Hasil uji aktivitas sintesis enzimatis ternyata hanya ada satu strain (kode CC-22) pada C. ceratosporum dan dua strain pada N. oculata (kode NN-5 dan NN-6) yang potensial menunjukkan peran stimulasi pertumbuhan mikroalga.  Dengan pendekatan karakterisasi molekuler menggunakan 16SrRNA maka diperoleh Marinobacter vinifirmus CC22, Alteromonas sp. NN-5, dan Marinobacter hydrocarbonoclastic NN-6. Dari tiga strain bakteri yang terisolasi nampaknya hanya Marinobacter vinifirmus CC22 dan Alteromonas sp. NN-5 yang mempunyai sifat dapat memacu pertumbuhan C. ceratosporum sebesar 1,76 kali (176 %) dan N. oculata sebesar 1,56 kali (156 %) dibandingkan dengan kontrol. Kedua strain bakteri ini menunjukkan potensi untuk meningkatkan kuantitas dan kualitas mikroalga serta berpeluang sebagai probiotic agent untuk menstimulasi pertumbuhan C. ceratosporum  dan N. oculata.

The intensification of  fish and shrimp seed production is necessitated to support the ever growing global aquaculture production. One of the problems faced by most hatcheries is the unavailability of high quality and stable supply of live feed (microalgae) required during larval rearing. Efforts to increase microalgae production through a coexistence relationship approach and promoting growth by utilizing the role of beneficial bacteria need to be carried out. The aims of this study were to obtain and determine the effectiveness of selected bacterial strains that have the ability to stimulate microalgae growth in controlled culture environments. In this study, the microalgae Chaetoceros ceratosporum and Nannochloropsis oculata were used. Bacteria associated in the culture were isolated, screened, tested for enzymatic synthesis activity, characterization, identification, culture, and re-inoculation on microalgal cultures. The results obtained were seven bacterial isolates from C. ceratosporum and eight isolates from N. oculata. The results of the enzymatic synthesis activity test showed that there was only one strain (code CC-22) in C. ceratosporum and two strains in N. oculata (codes NN-5 and NN-6) which potentially showed a role in stimulating microalgae growth. With a molecular characterization approach using 16SrRNA, Marinobacter vinifirmus CC22, Alteromonas sp. NN-5, and Marinobacter hydrocarbonoclastic NN-6. From the three isolated bacterial strains, it appeared that only Marinobacter vinifirmus CC22 and Alteromonas sp. NN-5 had the property of being able to stimulate the growth of C. ceratosporum by 1.76 times (176%) and N. oculata by 1.56 times (156%) compared to the control. These two bacterial strains showed the potential to increase the quantity and quality of microalgae and had the opportunity to act as probiotic agents to stimulate the growth of C. ceratosporum and N. oculata.


Keywords


Chaetoceros ceratosporum; mikroalga; Nannochloropsis oculata; pertumbuhan; strain bakteri; bacterial strain; Chaetoceros ceratosporum; growth; microalgae; Nannochloropsis oculata

Full Text:

PDF

References


Cardias, B. B., Barcelo-Villalobos, M., Lafarga, T., Aci´en Fernandez, F. G., Morais, M. G., & Costa, J. A. V. (2023). An overall analysis of CO2 demand and utilization of microalgal cultures in pilot-scale raceway reactors. Algal Research, 74, 103193 https://doi.org/10.1016/j.algal.2023.103197

Cooper, M., & Smith, A. (2015). Exploring mutualistic interactions between microalgae and bacteria in the omics age. Current Opinion in Plant Biology, 26, 147–153. https://doi.org/10.1016/j.pbi.2015.07.003

Cupo, A., Landi, S., Morra, S., Nuzzo, G., Gallo, C., Manzo, E., Fontana, A., & d’Ippolito, G. (2021). Autotrophic vs. heterotrophic cultivation of the marine diatom Cyclotella cryptica for EPA production. Marine Drugs, 19, 355. https://doi.org/10.3390/md19070355

Farahin A. W., Natrah, I., Nagao, N., Katayama, T., Imaizumi, Y., Mamat, N. Z., Yusoff, F. Md., & Shariff, M. (2021). High intensity of light: A potential stimulus for maximizing biomass by inducing photosynthetic activity in marine microalga, Tetraselmis tetrathele. Algal Research, 60, 102523.

Grossman, A. (2016). Nutrient acquisition: The generation of bioactive vitamin B12 by microalgae. Current Biology, 26, R319–R337, http://dx.doi.org/10.1016/j.cub.2016.02.047

Haryanti. (2002). Live food production. Lectured on training course on grouper hatchery seed production. Balai Besar Riset Budidaya Laut dan Penyuluhan Perikananan Gondol.

Karrar, E., Albakry, Z., Ahmed, I. A. M., Zhang, L., Chen. C., Wu, D., & Li, J. (2024). Docosahexaenoic acid and eicosapentaenoic acid from microalgae: Extraction, purification, separation, and analytical methods. Algal Research, 77, 103365. https://doi.org/10.1016/j.algal.2023.103365

Li, X. L., Marella, T. K., Tao, L., Li, R., Tiwari, A., & Li, G. (2017). Optimization of growth conditions and fatty acid analysis for three freshwater diatom isolates. Phycological Research, 65, 177–187. https://doi.org/10.1111/pre.12174

Ma, K., Bao, Q., Wu, Y., Chen, S., Zhao, S., Wu, H. and Jianhua Fan, J. (2020). Evaluation of microalgae as immunostimulants and recombinant vaccines for diseases prevention and control in aquaculture. Frontiers in Bioengineering and Biotechnology, 8, 590431. https://doi.org/10.3389/fbioe.2020.590431

Mazli, N. A. I. N., Yusoff, F. M. D, Nazardin, M. F., Khaw, Y. S., Tan, H. T., & Karim, M. (2024). Enhancing diatom, Cyclotella meneghiniana growth using growth-promoting bacteria isolated from the phycosphere of chlorophytes and chrysophytes. Asian Fisheries Society, 37(1), 23-36. https://doi.org/10.33997/j.afs.2024.37.1.002

Metsoviti, M. N., Papapolymerou, G., Karapanagiotidis. I. T., & Nikolaos Katsoulas, N. (2019). Effect of light intensity and quality on growth rate and composition of Chlorella vulgaris, Plants, 9, 31. https://doi.org/10.3390/plants9010031

Nef, C., Dittami, S., Kaas, R., Briand, E., Noël, C., Mairet, F., & Garnier, M. (2022). Sharing Vitamin B12 between bacteria and microalgae does not systematically occur: Case study of the haptophyte Tisochrysis lutea. Microorganisms, 10(7), 1337. https://doi.org/10.3390/microorganisms10071337

Nogami, K., & Maeda, M. (1992). Bacteria as biocontrol agents for rearing larvae of the crab Portunus trituberculatus. Canadian Journal of Fisheries and Aquatic Sciences, 49(11), 2373-2376.

Pacheco, M. M., Hoeltz, M., Moraes, M. S. A., & Schneider, R. C. S. (2015) Microalgae: Cultivation techniques and wastewater phycoremediation. Journal of Environmental Science and Health, Part A, 50, 573–589. https://doi.org/10.1080/10934529.2015.994951

Polat, E., Yüksel, E., & Altınbas, M. (2020). Effect of different iron sources on sustainble microalgae-based biodiesel production using Auxenochlorella protothecoides. Renewable Energy, 162, 1970-1978. https://doi.org/10.1016/j.renene.2020.09.030

Prasetyo, L. D., Supriyantini, E., & Sedjati, S. (2022). Pertumbuhan mikroalga Chaetoceros calcitrans pada kultivasi dengan intensitas cahaya berbeda. Buletin Oseanografi Marina, 11(1), 59–70. https://doi.org/10.14710/buloma.v11i1.31698

Ramanan, R., Kim, B., Cho, D., Oh, H., & Kim, H. (2016). Algae–bacteria interactions: Evolution, ecology and emerging applications. Biotechnology Advances, 34, 14–29. https://doi.org/10.1016/j.biotechadv.2015.12.003

Saccardo, A., Bezzo, F., & Eleonora Sforza, E. (2022). Microalgae growth in ultra-thin steady-state continuous photobioreactors: assessing self-shading effects. Frontiers in Bioengineering and Biotechnology, 10, 977429. https://doi.org.10.3389/fbioe.2022.977429

Sambrook, J., Ftitsch, E. F., & Maniatis, T. (1989). Molecular cloning. A laboratory manual, 2nd edition. Cold Spring Harbor Laboratory Press.

Setyaningsih, I., Desniar, Ermayanti, E. (2023). Komposisi kimia mikroalga laut Chaetoceros gracilis. http://repository.ipb.ac.id/handle/123456789/119154

Sofiyah, E. S., Septiariva, I. Y., & Suryawan, I. W. K. (2021). The opportunity of developing microalgae cultivation techniques in Indonesia. Berita Biologi, 20(2), 221-233. https://doi.org/10.14203/beritabiologi.v20i2.4000

Sureshkumar, S., Jasmin, B., Rahiman K. M. M., & Mohammed, A. A. H. (2014). Growth enhancement of micro algae, Chaetoceros calcitrans and Nannochloropsis oculata, using selected bacterial strains International Journal of Current Microbiology and Applied Sciences, 3(4), 352-359.

Tan J. S., Lee, S. Y., Chew, K.W., Lam, M. K., Lim, J. W., Ho, S.H., & Showa, P. L. (2020). A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered, 11(1), 116–129. https://doi.org/10.1080/21655979.2020.1711626

Torres-Maravilla, E., Parra, M., Maisey, K., Rodrigo, A., Cabezas-Cruz, V. A., Gonzalez, A., Tello, M., & Bermúdez-Humarán, L. G. (2024). Importance of probiotics in fish aquaculture: Towards the identification and design of novel probiotics. Microorganisms, 12, 626. https://doi.org/10.3390/microorganisms12030626




DOI: http://dx.doi.org/10.15578/jra.19.2.2024.141-155


Lisensi Creative Commons
Jurnal Riset Akuakultur is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats
p-ISSN 1907-6754
e-ISSN 2502-6534