

Available online at: <https://ejournal-balitbang.kkp.go.id/index.php/iaj>

MORINGA LEAF SIMPLICIA ENCHANCED HEALTH STATUS AND IMMUNE RESPONSE OF TILAPIA AGAINST *Edwardsiella tarda* INFECTION

Thamara Ratnadilla¹*, Dinamella Wahjuningrum^{1,2}#, and Widanarni¹

¹ Aquaculture Science, Post Graduate Study Program, Faculty of Fisheries and Marine Sciences, IPB University, Dramaga Campus, Bogor, West Java 16680, Indonesia

²) Department of Aquaculture, Faculty of Fisheries and Marine Science, IPB University, Bogor, West Java 16680, Indonesia

(Received: February 20, 2025; Final revision: June 24, 2025; Accepted: June 24, 2025)

ABSTRACT

Intensive fish aquaculture increases the risk of diseases like Edwardsiellosis caused by *Edwardsiella tarda*, which can lead to 30–50% mortality rates. While antibiotics have been used for disease control, excessive use can result in antibiotic residue and bacterial resistance. Moringa leaves (*Moringa oleifera*) are a promising herbal ingredient containing active compounds like glucomoringin, moringin, flavonoids, tannins, saponins, alkaloids, and phenols, which can be used in aquaculture. This study aims to evaluate the effect of administering different doses of moringa leaf simplicia (MOLS) through feed for the prevention of *E. tarda* bacterial infection in tilapia. The research was conducted in two stages, namely *in vitro* and *in vivo* testing. The first stage was an *in vitro* test to determine the dose of moringa leaf extract that can inhibit the growth of *E. tarda*. The second stage was an *in vivo* test to evaluate the effect of feeding MOLS on growth performance, health status and immune response, and resistance of tilapia to *E. tarda* infection. *In vivo* tests were namely MOLS 12.5 g kg⁻¹ (M12.5), 25 g kg⁻¹ (M25), 50 g kg⁻¹ (M50), positive control (K+) and negative control (K-). The test fish used were tilapia fish measuring 7.77 ± 0.06 g which were kept in 15 aquaria with density of 10 fish per aquarium for 30 days. Fish were challenged on the 31st day with *E. tarda* cell suspension 10⁶ CFU mL⁻¹ which corresponds of the LD50 value—the bacterial dose that cause 50% mortality in the tested fish population and then the fish were maintained for 7 days. The results showed that increasing the addition of MOLS for 30 resulted in significant improvements ($P < 0.05$) in growth of tilapia with control. The highest abundance of lactic acid bacteria was found in the M12.5 treatment, a significant difference ($P < 0.05$) compared to the control treatment. MOLS also significantly improved the health status and immune response of tilapia ($P < 0.05$), and suppressed the population of *E. tarda* in kidney and liver organs. Kidney histopathology showed normal to lightly damage in the MOLS treatment observed significantly lower ($P < 0.05$) than the K+ treatment with lightly damage. Liver histopathology also showed normal to lightly damage in MOLS treatment observed significantly lower ($P < 0.05$) than K+ with medium damage. M12.5 treatment showed the highest resistance significantly different ($P < 0.05$) compared to K+ treatment. MOLS was able to improve the health status and immune response, as well as the resistance of tilapia to *E. tarda* infection with the best dose in feed with the addition of 12.5 g kg⁻¹ MOLS.

KEYWORDS: *Edwardsiella tarda*; immunostimulant; moringa; simplicia; tilapia

INTRODUCTION

According to the FAO (2024), the main aquaculture production in Indonesia in 2021 was tilapia (*Oreochromis* sp.). Tilapia is widely cultivated across various regions and has developed well in Indonesia due to its high economic value (Suprayudi, 2013). Based on the performance report from the Ministry of Marine Affairs and Fisheries (KKP, 2024), tilapia production in 2023 reached 1.36 million tons, account-

ing for 65.82% of the target of 2.07 million tons. This indicates a need to increase production to meet the target. Tilapia holds great potential in aquaculture due to advantages such as relatively fast growth, suitability for high-density farming, ability to consume both natural and artificial feed, and high adaptability to a wide range of water quality conditions (Hendriana *et al.*, 2022).

A strategy to increase tilapia production in order to meet the target is through the development of intensive aquaculture systems. Intensive tilapia farming requires high stocking densities and increased

* Correspondence: Department of Aquaculture, Faculty of Fisheries and Marine Science, IPB University, Bogor, West Java 16680, Indonesia
E-mail: dinamellawa@apps.ipb.ac.id

feeding (Suprayudi *et al.*, 2017). However, intensive farming systems carry the risk of disease outbreaks in fish. Diseases in fish can hinder production, cause outbreaks, slow growth, prolong the rearing period, and ultimately lead to the death of the cultured fish. Fish diseases that commonly affect aquaculture commodities are often caused by bacteria, one of which is *Edwardsiella tarda*, the bacterium responsible for Edwardsiellosis. According to Narwiyani & Kurniasih (2011), factors influencing *E. tarda* infection include fish stress, particularly due to high stocking densities, poor water quality, and high organic matter content. Horizontal transmission of *E. tarda* occurs through contact between hosts or via the water.

So far, to minimize mortality caused by *E. tarda* infections, chemical substances (antibiotics) classified as safe have been used, with their application following government regulations (A'yunin *et al.*, 2020). The use of chemical treatments such as antibiotics has been restricted under the Ministry of Marine Affairs and Fisheries Regulation No. 1 of 2019 concerning the use of fish medication. Continuous use of chemical substances can lead to new problems, such as the accumulation of residues in fish tissues and the development of bacterial resistance (Maqsood *et al.*, 2009). Therefore, disease control using natural substances is needed, as they do not cause negative effects on consumers or the environment. Natural substances used as medicine without undergoing any processing are referred to as simplicia. One such natural material that can act as an immunostimulant is the moringa leaf (*Moringa oleifera*). Moringa leaves contain active compounds such as glucomoringin and moringin (Borgonovo *et al.*, 2020), as well as flavonoids, alkaloids, phenols, tannins (Ikalinus *et al.*, 2015; Riskianto *et al.*, 2021), and saponins (Arora *et al.*, 2013). Moringa leaves serve as an immunostimulant (Mansour *et al.*, 2018), and also have antimicrobial, anti-inflammatory (Borgonovo *et al.*, 2020), and antioxidant properties (Abdallah & Ali, 2018). Their abundant availability year-round, affordability, and ease of access make them a promising option for use.

The use of moringa leaves as an immunostimulant has been widely applied through various methods, including immersion, injection, and oral administration. The use of moringa leaf simplicia (MOLS) at a concentration of 15 mg/mL has been shown to enhance immune responses and control *Aeromonas hydrophila* infections in tilapia (Abd El-Gawad *et al.*, 2019); moringa leaf extract (MOLE) at 0.075 mg/mL injected into tilapia fingerlings improved non-specific immune responses against *A. hydrophila* (Subryana *et al.*, 2020); administration of MOLE at 0.0625 mg/

mL helped control *Epistylis* sp. infestations in tilapia (Abdushamad *et al.*, 2022); extract concentrations of 25 mg/mL increased non-specific immune responses and resistance to *Vibrio alginolyticus* (Abidin *et al.*, 2022); and MOLS at 15 mg/mL improved nutrition and growth performance in *Pangasianodon hypophthalmus* (Windarti *et al.*, 2023). However, based on previous research, the use of MOLS to prevent *E. tarda* infections in tilapia has not yet been scientifically studied. Therefore, research is needed to evaluate the effectiveness of MOLS in preventing *E. tarda* infections in tilapia.

MATERIALS AND METHODS

This study consisted of two stages: in vitro and in vivo testing. The first stage involved in vitro tests to determine the effective dose of moringa leaf extract (MOLE) that can inhibit the growth of *E. tarda* bacteria. The second stage was an in vivo test to evaluate the effect of administering moringa leaf simplicia (MOLS) through feed on tilapia challenged with *E. tarda*. At the time this study was conducted, formal ethical approval from an animal ethics committee was not available. However, all experimental procedures were performed in accordance with standard animal welfare practices, ensuring the minimization of stress, pain, and discomfort to the experimental animals. The handling and maintenance of fish followed the principles of the 3Rs (Replacement, Reduction, and Refinement).

In Vitro Testing

Preparation of Moringa Leaf Extract

Moringa leaves were obtained from Blora, Central Java, Indonesia. The leaves were thoroughly washed and dried in an oven at 60°C. The dried leaves were then blended into a fine powder to produce simplicia. For inhibition zone and MIC testing, the MOLS was processed into an extract. The simplicia was macerated using 96% ethanol at a ratio of 1:4 (w/v) and shaken for 24 hours. The solution was filtered using Whatman No. 41 filter paper to obtain the filtrate and then remacerated twice with 96% ethanol. The filtrate was concentrated using a rotary vacuum evaporator at 40°C. The MOLE was stored at 4°C (Abidin *et al.*, 2022).

Preparation of *E. tarda* Bacteria

The bacterial isolate was cultured on brain heart infusion agar (BHIA) in petri dishes and incubated for 24–48 hours. The *E. tarda* bacteria were made resistant to the antibiotic rifampicin. The bacterial colonies that grew were inoculated into brain heart infusion broth (BHIB) and incubated on a shaker at 1400

rpm for 24 hours. The culture was then diluted using the serial dilution method.

Experimental Design In Vitro

The first phase of the study involved an in vitro test to determine the effective dose of MOLS that could inhibit the growth of *E. tarda* through inhibition zone and minimum inhibitory concentration (MIC) assays. The in vitro test was conducted using eight treatments with three replications each, with dosages based on the study by (Abidin *et al.*, 2022).

The treatments in this study consisted of several groups. The PBS control group used a medium containing phosphate-buffered saline (PBS). The Antibiotic control group used a medium supplemented with the antibiotic oxytetracycline (OTC) at a concentration of 50 ppm. The *E. tarda* control group was exposed to a medium containing *E. tarda*. Several experimental groups were treated with different concentrations of MOLE : M1.25 with 1.25 mg/mL, M2.5 with 2.5 mg/mL, M5 with 5 mg/mL, M10 with 10 mg/mL, and M20 with 20 mg/mL. These treatments aimed to evaluate the effectiveness of MOLE as an alternative treatment against *E. tarda* infection. The concentrations of 1.25–20 mg/mL of *M. oleifera* leaf extract (MOLE) used in this study were determined based on preliminary in vitro antibacterial assays against *E. tarda*, including inhibition zone and MIC tests. The selected dose range reflects a gradient from minimally effective to maximum tolerable concentrations suitable for dietary administration.

Inhibition Zone Test of *E. tarda* and MIC Test

The antibacterial activity of MOLE was tested using the Kirby-Bauer method. BHIA media was divided into several sections and labeled according to the respective treatments. *E. tarda* bacteria were inoculated onto the media using a sterile cotton swab, evenly spread across the agar surface. The MOLE was diluted using 50% dimethyl sulfoxide (DMSO) at 1 mL, with extract concentrations based to 1.25, 2.5, 5, 10, and 20 mg/mL. The positive control used oxytetracycline, the negative control used PBS, and the *E. tarda* control contained only the bacteria, with each treatment performed in triplicate. Sterile paper discs were soaked in the extract solution until fully saturated, then placed on the surface of the BHIA medium. The media were then incubated for 24–48 hours at 28°C. Clear zones (inhibition zones) formed around the discs were measured using a caliper with an accuracy of 0.05 mm.

MIC test was conducted using the broth dilution method based on Unegbu *et al.* (2020). Each falcon tube was filled with 5 mL of BHIB and treated with

MOLE at concentrations of 1.25, 2.5, 5, 10, and 20 mg/mL. The positive control used oxytetracycline, the negative control used PBS, and the *E. tarda* control contained only the bacteria without any treatment. All treatments, except for the negative control, were inoculated with 5 µL of *E. tarda* bacterial suspension and shaken for 24 hours. The contents were then centrifuged at 5000 rpm for 5 minutes to separate the pellet and supernatant. The pellet was rinsed twice with PBS. The results of the dilution were measured using a spectrophotometer at a wavelength of 630 nm.

In Vivo Testing

Experimental Design In Vivo

The second phase of the study involved an in vivo test aimed at evaluating the effects of MOLS through feed on growth performance, health status, immune response, and resistance of ilapia to *E. tarda* infection. The in vivo experimental design consisted of five treatments with three replications each. The doses used in the in vivo test were based on the results of the in vitro test, with the extract doses converted into simplicia form using a 10% yield rate (Kusuma & Aprileili, 2022). This yield was calculated from the weight of the extract obtained (7.5 g) divided by the weight of the original simplicia (75 g), then multiplied by 100%.

The treatments consisted of five groups. The K-group received regular feed and was injected with PBS on day 31. The K+ group also received regular feed but was injected with *E. tarda*. The M12.5, M25, and M50 groups were fed diets containing 12.5, 25, and 50 g/kg of MOLS, respectively, and were all injected with *E. tarda* on day 31 to assess the effects of MOLS on disease resistance.

The preparation of the containers involved using 15 glass aquariums measuring 60×30×30 cm were used in the study. Each aquarium was first washed with soap and rinsed with clean water. They were then disinfected with 30 ppm chlorine for 24 hours while being aerated strongly. After disinfection, the aquariums were neutralized using 60 ppm sodium thiosulfate and aerated until the chlorine odor disappeared. The water was then drained, and the aquariums were dried before being filled with clean water that had been filtered for 24 hours using bioballs and dacron to a depth of 20 cm.

Test Feed Preparation

The test feed used commercial pelleted feed containing 30-35% protein. Mixing of MOLS into the feed was done by the repelleting method. Commercial fish

feed is pulverized into flour, then commercial feed is added to each MOLS according to the treatment, namely 12.5 g kg⁻¹, 25 g kg⁻¹, 50 g kg⁻¹. Then stirred using a mixer until homogeneous. Water was added, then 2% commercial binder. After the mixing process,

the material was molded using a pellet molding machine. The pellet drying process is carried out using an oven at 60°C for 2 hours and then the feed is stored in an airtight container at room temperature. The diet composition of the four diets on Table 1.

Table 1. Formulation of experimental diets (g per 500 g)

Ingredient	Experimental feed tested diets			
	M0	M12.5	M25	M50
Moringa leaf simplicia	0	6.25	12.5	25
Commercial diet	490	483.75	477.5	465
Binder	10	10	10	10
Total	500	500	500	500

Meaurement of Water Quality

Water quality during the rearing period was checked periodically, every 3 days after syphoning in the morning for 30 days. Parameters measured in situ include temperature, pH, and dissolved oxygen (DO), while ex situ parameters include ammonia, nitrite, and nitrate. The measurement results of temperature, pH, DO showed that they were in accordance with the water quality standards based on SNI 7550:2009, namely temperature (27–29°C), pH (7.30–7.98), dissolved oxygen (DO) (7.7–9.4 mg L⁻¹). While the measurement results of nitrite (0.19–0.42 mg L⁻¹) are in accordance with the standard standards of Ebeling *et al.* (2006), nitrate (1.38–1.63 mg L⁻¹) in accordance with (PP No. 22 of 2021), and total ammonia nitrogen (TAN) (0.23–0.48 mg L⁻¹) according to Caldini *et al.*, 2015). All water quality parameters during rearing were within the water quality standards for tilapia aquaculture.

Observed Parameters

Growth Performance

Growth performance parameters were observed during the MOLS feeding period, namely the beginning of fish stocking (H0) and the end of the rearing period (H30).

Fish survival rate was observed from the beginning to the end of rearing, with calculations using the following formula (Dawood *et al.*, 2015):

$$SR (\%) = \frac{\text{fish harvested}}{\text{fish stocked}} \times 100$$

The average daily growth rate of fish was observed at the end of rearing, with calculations using the following formula (Steffens, 1989):

$$ADG = \frac{\text{final mean weight (g)} - \text{initial mean weight(g)}}{\text{rearing time (days)}}$$

The feed conversion ratio was observed at the end of maintenance, with the calculation using the following formula (Putra *et al.*, 2019):

$$FCR = \frac{\text{total feed given}}{\text{fish weight gain}}$$

Total feed intake is the amount of feed consumed by fish during maintenance. The amount of feed intake is calculated every day from the beginning to the end of maintenance, with the calculation using the following formula (Gabriel, 2019):

$$FI (g) = \text{amount of initial feed (g)} - \text{amount of final feed (g)}$$

Bacterial Count

Calculation of total LAB was carried out with total LAB that grew on Man Rogosa and Sharpe Agar (MRSA) media (Fardiaz, 1993). Preparation of MRSA by weighing MRSA as much as 67.13 g dissolved in 1000 mL of distilled water, then the MRSA solution was sterilized with an autoclave at 121°C for 15 minutes. Furthermore, the media was left until lukewarm, then aseptically the media was poured into Petri dishes and left until solid. Total LAB counting began with 0.1 g of crushed intestinal organ samples, then put into a tube containing 0.9 mL of sterile PBS, then homogenized. A total of 0.1 mL of sample was diluted into 0.9 mL of sterile PBS and serial dilutions were performed. The results of the dilution were spread as much as 50 µL of each MRSA media. The media containing the culture was incubated for 24 hours at 37°C, then the total abundance of bacteria was calculated using the Total Plate Count (TPC) method with the formula (Fardiaz, 1993):

$$\text{LAB Count (CFU mL}^{-1}\text{)} = \frac{\text{number of colonies}}{\text{volume inoculated (mL)} \times \text{dilution factor}}$$

Calculation of bacterial population using the TPC method (Barus *et al.*, 2017). The target organs of fish that will calculate the population density of *E. tarda*

bacteria are liver and kidney (Indriasari *et al.*, 2020). Organs were weighed as much as 0.1 g and then crushed, then serial dilutions were made using 0.9 mL of sterile PBS solution. Each dilution, the eppendorf tube was vortexed first before being inserted into the next media diluent to make it homogeneous.

$$\Sigma \text{Bacteria (CFU mL}^{-1}\text{)} = \text{number of colonies} \times \frac{1}{\text{dilution factor}} \times \frac{1}{\text{sample (mL)}}$$

Health Status and Response Immune

The parameters of health status and immune response were observed five times, namely, at the beginning of fish stocking into the aquarium (H0), at the end of the rearing period (H30), after the challenge test (H+1, H+3, and H+7).

Total erythrocytes were counted using the method of Blaxhall & Daisley (1973). Blood samples were sucked using an erythrocyte Thoma pipette containing a red

$$Hc (\%) = \frac{\text{length of volume of red blood cells that settle}}{\text{length of total blood volume in the tube}} \times 100$$

Haemoglobin levels were observed using the Wedemeyer & Yasutake (1977) method, i.e. Sahli tubes were filled using 0.1 N HCl to scale 10 (red scale). Blood was sucked using a Sahli pipette as much as 0.02 mL, then put into a Sahli tube and allowed to stand for 3 minutes. After that, the Sahli tube was placed between 2 standard color tubes. Distilled water was added and stirred slowly using a stirring rod until the same color as the standard color. Haemoglobin levels were expressed in G% according to the yellow scale recorded on the Sahli tube.

Haematocrit levels (Hc) were observed and calculated using the method of Anderson (1993). Blood samples were sucked using a haematocrit tube slowly up to ¾ of the tube. The lower end of the haematocrit tube was closed using crystoseal to block the blood

$$\Sigma \text{Leukocytes (sel mm}^{-3}\text{)} = \Sigma \text{cells counted} \times \frac{1}{\text{vol. big box}} \times \text{dilution factor}$$

A total of 50 μl of fish blood samples and 50 μl of *Staphylococcus aureus* bacterial suspension were taken and then put into an Eppendorf tube and mixed and incubated at 28°C for 20 minutes. After that, a mixture containing bacterial suspension and blood was taken as much as 5 μl to make thin section prepa-

$$\text{Percentage of cells that necrosis (\%)} = \frac{\text{number of necrosis cells}}{\text{total number of cells}} \times 100$$

The respiratory burst value was calculated using the method proposed by Divyagnaneswari *et al.* (2007). Blood samples were put into a microplate as much as 50 μL and then incubated at 37°C for one

hour. The results of the dilution were spread as much as 50 μL on BHIA media. Incubation was carried out at 37°C for 24 hours. Calculation of the number of colonies that grow with the formula (Madigan *et al.*, 2012):

$$\Sigma \text{Bacteria (CFU mL}^{-1}\text{)} = \text{number of colonies} \times \frac{1}{\text{dilution factor}} \times \frac{1}{\text{sample (mL)}}$$

stirring bulb to a scale of 0.5, then Hayem's solution was added to a scale of 101. After that, both ends of the pipette were closed using fingers and then homogenized by forming a figure 8 for 3-5 minutes until the blood was mixed. A total of 1-2 drops of blood are discarded, then the sample is put into a microtube or can be directly observed using a haemacytometer under a microscope with a magnification of 250 X, using the following formula:

from escaping. Next, the blood-filled tube was centrifuged at 3500 rpm for 15 minutes. The hematocrit level can be calculated using the following formula:

Total leukocytes were counted using the method of Blaxhall & Daisley (1973). Blood samples were sucked using a Thoma leukocyte pipette containing a white stirring bulb to scale 0.5, then Turk's solution was added to scale 11. After that, both ends of the pipette were closed using a finger and then homogenized in a figure 8 shape for 3-5 minutes until the blood was mixed. A total of 1-2 drops of blood are discarded, then the sample is put into a microtube or can be directly observed using a haemacytometer under a microscope with a magnification of 250x, with the following formula:

$$\Sigma \text{Leukocytes (sel mm}^{-3}\text{)} = \Sigma \text{cells counted} \times \frac{1}{\text{vol. big box}} \times \text{dilution factor}$$

rations. The preparations were fixed using methanol solution for 5 minutes, followed by immersion using giemsa solution for 10 minutes and dried. Phagocytic activity was observed using a microscope and calculated using the formula of Anderson & Siwicki, (1993):

$$\text{Percentage of cells that necrosis (\%)} = \frac{\text{number of necrosis cells}}{\text{total number of cells}} \times 100$$

hour. Blood was removed and rinsed using 100 μL PBS for three replicates. 0.2% nitroblue tetrazolium (NBT) solution of 50 μL was added to the microplate

and incubated again at 37°C for one hour. The 0.2% NBT solution was discarded and fixed using 100 µL of 100% methanol for 10 minutes, then the 100% methanol solution was discarded and rinsed again using 100 µL of 30% methanol for three replicates, with a 3-minute interval, then dried. The last process is to add 60 µL of potassium hydroxide (KOH) 2N and 70 µL of dimethyl sulphoxide (DMSO). Reading of the results can be done using a microplate reader at a wavelength of 630 nm.

Histopathology in fish was observed in the kidney and liver. Stages in making preparations are target organs fixed using Neutral Buffer Formaline (BNF) solution, dehydration, clearing, embedding, making tissue blocks and tissue staining using hematoxylin and eosin (Maulani *et al.*, 2017), followed by observation under a microscope. Histopathological analysis was performed qualitatively by calculating the per-

centage of necrosis in the observed organs with five different field of view using the method of Mustaqien *et al.* (2008) with the following formula:

Calculation of the amount of necrosis is followed by scoring the histopathology tissue that refers to the research of Wolf *et al.* (2015). The scoring of histopathology organs is presented in Table 2.

Data Analysis

Data were processed using Microsoft Excel 2019 and analyzed with SPSS 26 software. Prior to analysis, normality was assessed using the Shapiro-Wilk and homogeneity of variance was evaluated using Levene's tests, both at a significance level of ($P < 0.05$). After normality and homogeneity test ($P < 0.05$), statistical analysis was performed using 1 Way-ANOVA with a 95% confidence interval. If significant differences ($P < 0.05$) were detected among treatments, post-hoc test was performed using the Duncan test.

Table 2. Histopathology organ scoring

Necrosis	Score	Damage level
$P < 20\%$	0	Ordinary
$20\% \leq P < 40\%$	1	Lightly damage
$40\% \leq P < 60\%$	2	Medium damage
$60\% \leq P < 80\%$	3	Heavily damage
$P \geq 80\%$	4	Very heavily damage

RESULTS AND DISCUSSION

Inhibition and MIC Test

Inhibition zone test results show that all concentrations of moringa leaf extract (MOLE) have antibacterial activity against *E. tarda*, indicated by the formation of an inhibition zone in each treatment (Table 3). The zone of inhibition increased as the concen-

tration of the extract increased, from 1.016 cm at 1.25 mg/mL to 2.086 cm at 20 mg/mL. Treatment with antibiotics (positive control) produced the largest zone of inhibition (3.058 cm), which was significantly higher than all other treatments ($P < 0.05$). Meanwhile, the PBS control and *E. tarda* control showed no inhibition zone, indicating the absence of antibacterial activity in both treatments.

Table 3. Inhibition zone and MIC test of moringa leaf extract on the growth of *E. tarda* bacteria

Treatments	Inhibition zone diameter (cm)	MIC test (Optical Density OD ₆₃₀)
PBS control	0.00 ± 0.00^a	0.00 ± 0.00^a
Antibiotic control	3.058 ± 0.050^f	0.540 ± 0.036^b
<i>E. tarda</i> control	0.00 ± 0.00^a	2.378 ± 0.211^g
M1.25	1.016 ± 0.018^b	2.117 ± 0.151^f
M2.5	1.234 ± 0.116^{bc}	1.931 ± 0.051^{ef}
M5	1.258 ± 0.073^c	1.785 ± 0.134^e
M10	1.792 ± 0.084^d	1.490 ± 0.087^d
M20	2.086 ± 0.201^e	1.272 ± 0.105^c

Different superscripts letters following (mean \pm standard deviation); n=3 in the same column indicate significant differences ($P < 0.05$). PBS control (negative control), Antibiotic control (positive control), *E. tarda* control (control *E. tarda*, M1.25, 2.5, 5, 10, 20 (moringa leaf extract 1.25, 2.5, 5, 10, 20 mg mL⁻¹)

In contrast, the minimum inhibitory concentration (MIC) test results showed a different trend. At concentrations of 1.25–5 mg/mL, the reduction in bacterial growth was not significant to each other, with OD values remaining high (around 2.117 to 1.785), indicating weak inhibitory activity. Inhibitory effectiveness was only significant at higher concentrations of 10 and 20 mg/mL, with OD of 1.490 and 1.272 respectively, although still not as effective as antibiotics (OD 0.540). Thus, moringa extract showed significant antibacterial potential in the zone of inhibition test, but its effectiveness in the MIC test showed that high concentrations are needed to significantly inhibit bacterial growth.

The results of the inhibition zone test showed that all concentrations of MOLE formed a clear zone, as an indicator of inhibition of *E. tarda* growth. The higher the concentration of MOLE used shows the greater the inhibition zone formed, meaning that the bacterial activity of MOLE increases with increasing concentration of extract used. This is supported by MIC testing which also shows that the higher the concentration of moringa leaf extract used, it will be indicated by a decrease in the growth of *E. tarda* bacteria. The inhibition zone formed shows that moringa leaves have antibacterial activity, for example phenol, which works by inhibiting bacterial growth through inactivation of proteins in the cell membrane, which later binds to proteins in the bacterial cell wall structure through the formation of hydrogen bonds (Novita, 2016). The hydrogen bonds cause damage to cell wall proteins and cytoplasmic membranes, resulting in macromolecular and ionic imbalances in the cell (Hariati *et al.*, 2018). In addition, according to Dwicahyani *et al.* (2018), saponins found in moringa have the ability to affect bacterial cell wall tension by binding to lipopolysaccharides. This process increases the permeability of the cell wall while reducing its

surface tension. Once inside the bacterial cell, the saponins disrupt the cell's metabolism. In addition, tannins also exhibit antibacterial properties by activating bacterial metabolic enzymes and inhibiting protein transport in the inner layer of the cell (Sapara *et al.*, 2016). The antibacterial mechanism of this combination of compounds works synergistically, thus increasing the effectiveness against bacteria (Rempe *et al.*, 2017).

Growth Performance

The growth performance of tilapia with feed containing MOLS for 30 days is presented in Table 4. Overall growth performance (FBW, ADG, FCR, SR) in the MOLS treatment (M12.5) showed no significant difference ($P>0.05$) compared to M0. However, there was a significant difference ($P<0.05$) in the M25 and M50 treatments which tended to decrease.

Giving MOLS 12.5 g kg⁻¹ on the parameters of FBW, ADG, and FCR there was no significant difference ($P>0.05$) compared to the control (M0). This is in accordance with the research of Abd El-Gawad *et al.* (2019) showed that there was no significant difference ($P>0.05$) in moringa leaves included in tilapia feed at levels of 1.5% and 5% compared to the control on the additional weight of fish reared for 60 days. In addition, the provision of MOLS 50 g kg⁻¹ was significantly lower ($P<0.05$) compared to the control. The low amount of FI results in low final weight produced. Research by El-Kassas *et al.* (2020) showed that the addition of moringa leaf flour (5% and 10%) reduced the amount of FI by tilapia compared to the control treatment. In addition, it is also in line with the research of Mapanao *et al.* (2021) there is a reduction in growth performance (weight gain, daily growth rate, specific growth rate in tilapia with feed treatment with the addition of moringa leaves more than 15%.

Table 4. Growth performance, FCR, FI and SR (mean \pm standard deviation (SD), n=3) of tilapia fed with experimental feed for 30 days

Parameters	Experimental diets containing different levels of moringa leaf simplicia (g kg ⁻¹)			
	M0	M12.5	M25	M50
IBW(g)	7.77 \pm 0.05	7.78 \pm 0.06	7.74 \pm 0.05	7.83 \pm 0.06
FBW(g)	19.35 \pm 0.89 ^c	18.05 \pm 0.80 ^c	16.04 \pm 0.60 ^b	11.57 \pm 0.54 ^a
ADG (g/day)	0.39 \pm 0.03 ^c	0.34 \pm 0.03 ^c	0.28 \pm 0.02 ^b	0.12 \pm 0.02 ^a
FCR	1.20 \pm 0.07 ^a	1.20 \pm 0.09 ^a	1.34 \pm 0.08 ^{ab}	1.47 \pm 0.21 ^b
FI (g)	138.53 \pm 2.16 ^d	123.17 \pm 1.98 ^c	110.54 \pm 0.54 ^b	53.90 \pm 1.46 ^a
SR (%)	90 \pm 0.00 ^a	96.67 \pm 5.77 ^a	93.33 \pm 5.77 ^a	90 \pm 0.00 ^a

Different superscript letters following in the same row indicate significant differences ($P<0.05$). IBW (Initial body weight), FBW (Final body weight), ADG (Average daily growth), FCR (Feed conversion ratio), FI (Feed intake), SR (Survival rate).

Reduced growth performance in fish given high doses of MOLS is thought to be caused by antinutrient content, compounds that can interfere with absorption and reduce nutrient utilization (Auwal *et al.*, 2019). Tannins and saponins are thought to exceed the normal limits that fish can accept, resulting in disruption of several physiological functions of treated fish (Mansour *et al.*, 2018). Therefore, there is a reduction in growth performance in fish. According to Richter *et al.* (2003), the addition of moringa leaf meal with a concentration of 10%, 20%, and 30%, followed by an increase in antinutrients such as tannins and saponins showed a significant reduction in growth performance such as the amount of feed consumption, specific growth, final weight of individuals. Similarly, Yuangsoi *et al.* (2014) reported that excessive tannins and saponins in moringa could negatively impact fish growth. Madalla *et al.* (2013) explained that high saponin levels reduce feed palatability, lowering feed intake. Furthermore, saponins can alter cell membrane structure and function by increasing mucosal permeability, thereby impairing nutrient absorption and transport (Mapanao *et al.*, 2021).

Health Status and Immune Response

Feeding tilapia with the MOLS for 30 days is proven to improve health status and immune response include total erythrocytes (TE), haemoglobin (Hb), haematocrit (Hc), total leukocytes (TL), phagocyte activity (AF), and respiratory burst (Rb) as presented in Table 5. The TE of tilapia at H0 was $1.69 \pm 0.06 \times 10^6$ cells mm^{-3} , then experienced the highest increase

during 30 days of maintenance in the M12.5 treatment at $2.73 \pm 0.10 \times 10^6$ cells mm^{-3} which was significantly different ($P < 0.05$) with all treatments. The Hb of tilapia at H0 was 6.33 ± 0.76 G%, then experienced the highest increase on the 30th day of maintenance, namely M12.5 at 9.27 ± 0.46 G%, and M25 at 8.90 ± 0.10 G% and significantly different ($P < 0.05$) from all treatments. The Hc of tilapia at H0 was 17.13 ± 0.12 %, then experienced the highest increase during 30 days of maintenance in the M12.5 treatment at 24.76 ± 0.32 % and significantly different ($P < 0.05$) from K- at 21.88 ± 0.83 %. The TL of tilapia at H0 was $2.33 \pm 0.12 \times 10^4$ cells mm^{-3} , then after 30 days of maintenance experienced the highest increase in the treatment of M12.5 at $2.92 \pm 0.07 \times 10^4$ cells mm^{-3} and M25 at $2.81 \pm 0.10 \times 10^4$ cells mm^{-3} which was significantly different ($P < 0.05$). The AF of tilapia at H0 was 40.54 ± 0.13 %, then experienced the highest increase during maintenance in the M12.5 treatment of 47.34 ± 1.67 % which was significantly different ($P < 0.05$) from the M50 treatment of 42.43 ± 0.88 %.

After 30 days of MOLS administration, tilapia exhibited an increase in total erythrocyte (TE) count, remaining within the normal range for teleost fish ($1.00\text{--}3.00 \times 10^6$ cells/ mm^3 ; Royan *et al.*, 2014). This suggests that MOLS may stimulate erythropoiesis, potentially through bioactive compounds that enhance erythropoietin (EPO) production (Nurhayati *et al.*, 2023; Yanuartono *et al.*, 2019). Associated increases in hemoglobin (Hb) and hematocrit (Hc) were also observed, reflecting improved oxygen transport and

Table 5. Total erythrocytes (TE), haemoglobin (Hb), haematocrit (Hc), total leukocytes (TL), phagocytic activity (AF), and respiratory burst (Rb) of tilapia fed with experimental feed

Parameters	Times	Treatments				
		K-	K+	M12.5	M25	M50
Total erythrocytes ($\times 10^6$ cells/ mm^3)	H0	1.69 ± 0.06^a	1.69 ± 0.06^a	1.69 ± 0.06^a	1.69 ± 0.06^a	1.69 ± 0.06^a
	H30	2.31 ± 0.09^b	2.31 ± 0.09^b	2.73 ± 0.10^d	2.48 ± 0.08^c	2.09 ± 0.08^a
Haemoglobin (g%)	H0	6.33 ± 0.76^a	6.33 ± 0.76^a	6.33 ± 0.76^a	6.33 ± 0.76^a	6.33 ± 0.76^a
	H30	8.03 ± 0.25^b	8.03 ± 0.25^b	9.27 ± 0.46^c	8.90 ± 0.10^c	7.10 ± 0.26^a
Haematocrit (%)	H0	17.13 ± 0.12^a	17.13 ± 0.12^a	17.13 ± 0.12^a	17.13 ± 0.12^a	17.13 ± 0.12^a
	H30	21.88 ± 0.83^b	21.88 ± 0.83^b	24.76 ± 0.32^c	23.38 ± 1.22^{bc}	19.35 ± 1.07^a
Total leukocytes ($\times 10^4$ cells/ mm^3)	H0	2.33 ± 0.12^a	2.33 ± 0.12^a	2.33 ± 0.12^a	2.33 ± 0.12^a	2.33 ± 0.12^a
	H30	2.44 ± 0.20^a	2.44 ± 0.20^a	2.92 ± 0.07^b	2.81 ± 0.10^b	2.63 ± 0.25^{ab}
Phagocytic activity (%)	H0	40.54 ± 0.13^a	40.54 ± 0.13^a	40.54 ± 0.13^a	40.54 ± 0.13^a	40.54 ± 0.13^a
	H30	45.14 ± 0.81^b	45.14 ± 0.81^b	47.34 ± 1.67^c	42.84 ± 0.49^a	42.43 ± 0.88^a
Respiratory burst (OD 630 nm)	H0	0.10 ± 0.00^a	0.10 ± 0.00^a	0.10 ± 0.00^a	0.10 ± 0.00^a	0.10 ± 0.00^a
	H30	0.21 ± 0.01^a	0.21 ± 0.01^a	0.25 ± 0.01^a	0.23 ± 0.03^a	0.22 ± 0.01^a

Different superscripts letters following (mean \pm standard deviation) in the same row indicate significant differences ($P < 0.05$). K- (negative control), K+ (positive control), M12.5, M25, M50 (moringa leaf simplicia 12.5, 25, 50 g kg^{-1} feed)

blood volume (Bintang *et al.*, 2024; Fitriany & Saputri, 2018). Additionally, total leukocyte (TL) counts increased but remained within the normal physiological range (Elbahnswy & Elshopakey, 2020; Dotta *et al.*, 2014), with TL positively correlated with phagocytic activity (AF) and respiratory burst (RB), indicating enhanced immune function.

MOLS feeding for 30 days improved tilapia health and immune response after *E. tarda* challenge (Table 6). After being challenged with *E. tarda*, the health status and immune response of tilapia fluctuated. After the *E. tarda* challenge, TE, Hb, and Hc levels in tilapia decreased. However, by day 7, the M12.5 treatment showed the highest and significantly different ($P<0.05$) values: TE at $2.64\pm0.08 \times 10^6$ cells/mm³, Hb at 8.63 ± 0.51 g%, and Hc at 22.61 ± 1.22 %, indi-

cating better physiological responses compared to other treatments.

TL, AF and RB values after the challenge test with *E. tarda* increased. The highest TL value after the challenge test occurred on day 1 of the M12.5 treatment at $3.59\pm0.25 \times 10^6$ cells mm⁻³ M25 at $3.41\pm0.18 \times 10^6$ cells mm⁻³ and significantly different ($P<0.05$) from the K- and K+ treatments. The AF value of tilapia fish increased, with the highest value obtained on the 1st day after the challenge test in the M12.5 treatment of $64.00\pm1.38\%$ which was significantly different ($P<0.05$) from the K+, K- and M50 treatments. The highest RB value on the 3rd day after the challenge test in the M12.5 treatment was 0.81 ± 0.02 and significantly different ($P<0.05$) from all treatments.

Table 6. Total erythrocytes (TE), haemoglobin (Hb), haematocrit (Hc), total leukocytes (TL), phagocytic activity (AF), and respiratory burst (Rb) of tilapia fed with experimental feed after the challenge test using *E. tarda*

Parameter	Times	Treatments				
		K-	K+	M12.5	M25	M50
Total erythrocytes ($\times 10^6$ cells/mm ³)	H+1	2.28 ± 0.07^b	1.77 ± 0.19^a	2.55 ± 0.12^c	2.21 ± 0.10^b	1.90 ± 0.11^a
	H+3	2.31 ± 0.02^b	1.84 ± 0.06^a	2.60 ± 0.08^c	2.32 ± 0.07^b	1.92 ± 0.10^a
	H+7	2.40 ± 0.09^b	2.07 ± 0.12^a	2.64 ± 0.08^c	2.38 ± 0.02^b	2.07 ± 0.13^a
Haemoglobin (g%)	H+1	8.03 ± 0.06^c	5.93 ± 0.23^a	8.10 ± 0.36^c	7.47 ± 0.31^b	5.80 ± 0.35^a
	H+3	7.73 ± 0.31^{bc}	6.10 ± 0.36^a	8.27 ± 0.64^c	7.23 ± 0.25^b	5.73 ± 0.61^a
	H+7	7.70 ± 0.26^b	7.10 ± 0.36^b	8.63 ± 0.51^c	7.33 ± 0.31^b	5.87 ± 0.42^a
Haematocrit (%)	H+1	21.87 ± 0.59^c	17.00 ± 1.00^a	20.83 ± 1.04^c	18.94 ± 0.55^b	17.31 ± 0.77^a
	H+3	21.67 ± 0.29^c	17.96 ± 0.72^{ab}	22.17 ± 1.04^c	19.13 ± 0.32^b	17.36 ± 0.97^a
	H+7	22.07 ± 0.93^c	18.04 ± 1.04^{ab}	22.61 ± 1.22^c	19.54 ± 0.23^b	17.75 ± 0.69^a
Total leukocytes ($\times 10^4$ cells/mm ³)	H+1	2.48 ± 0.20^a	3.07 ± 0.12^b	3.59 ± 0.25^d	3.41 ± 0.18^{cd}	3.21 ± 0.10^{bc}
	H+3	2.51 ± 0.08^a	2.93 ± 0.10^b	3.42 ± 0.28^c	3.22 ± 0.04^{bc}	2.88 ± 0.27^b
	H+7	2.61 ± 0.10^a	2.83 ± 0.04^b	3.21 ± 0.13^c	2.92 ± 0.09^b	2.86 ± 0.17^b
Phagocytic activity (%)	H+1	44.94 ± 1.42^a	60.30 ± 0.66^c	64.00 ± 1.38^d	62.25 ± 1.75^{cd}	56.77 ± 1.57^b
	H+3	45.40 ± 4.38^a	57.80 ± 0.49^{bc}	60.03 ± 0.50^c	57.77 ± 0.67^{bc}	55.40 ± 2.26^b
	H+7	45.11 ± 0.85^a	50.67 ± 1.15^b	54.34 ± 1.16^c	49.95 ± 0.92^b	46.61 ± 1.99^a
Respiratory burst (OD 630 nm)	H+1	0.21 ± 0.01^a	0.48 ± 0.01^b	0.77 ± 0.01^e	0.66 ± 0.03^d	0.61 ± 0.01^c
	H+3	0.21 ± 0.01^a	0.48 ± 0.02^b	0.81 ± 0.02^d	0.71 ± 0.02^c	0.69 ± 0.01^c
	H+7	0.22 ± 0.01^a	0.47 ± 0.03^b	0.62 ± 0.05^c	0.53 ± 0.04^b	0.51 ± 0.05^b

Different superscript letters following in the same row indicate significant differences ($P<0.05$). K- (negative control), K+ (positive control), M12.5, M25, M50 (moringa leaf simplicia 12.5, 25, 50 g kg⁻¹ feed)

After the H+1 challenge test, there was a decrease in TE, Hc, Hb levels in tilapia due to infection with *E. tarda* bacteria. This happens because *E. tarda* is a Gram-negative bacterium that produces 2 exotoxins in the form of hemoxilin and dermatotoxin (Rodrigues *et al.*, 2019). Hemoxilin is able to lyse red blood cells so that blood and liberate haemoglobin which causes erythrocytes to decrease. The decrease in erythrocytes reduces the oxygen-carrying capacity in the

blood which ultimately has a negative impact on fish health. Dermatoxins function to damage skin tissue and also cellulose membranes that will look like wounds or lesions in infected fish (Rozi *et al.*, 2022). After H+3, there is an effect of the addition of MOLS which is indicated by an increase in TE followed by an increase in Hb and Hc levels. According to Mohammadian *et al.* (2019), that the increase in TE determines the mechanism of fish resistance against

pathogens, affects fish health, and increases blood immune function. Increased Hb levels indicate a post-infection healing process that is influenced by the active compounds of MOLS. Moringa leaves contain flavonoids that have antioxidant properties. These antioxidants protect red blood cells from oxidative damage that can cause the destruction of red blood cells (hemolysis). The oxidation process can damage red blood cell membranes and reduce their lifespan, but the antioxidant compounds in moringa help maintain the stability and sustainability of red blood cells in the body. This also causes Hc and Hb levels to increase after the challenge test.

TL, AF, and RB values in infected fish are positively correlated. When fish are infected, the immune system will increase leukocyte production to fight the pathogen, with leukocytes playing a role in stimulating antibody formation and recognizing antigens (Syawal et al., 2021). Immune cells such as macrophages and dendritic cells recognize the pathogen and release cytokines and chemokines that attract more leukocytes to the site of infection. AF increases when phagocytic cells such as neutrophils and macrophages engulf and destroy pathogens. The increase in AF is influenced by immunostimulants that activate receptors on phagocytic cells to digest bacteria (Elala & Ragaa, 2015). The phagocytosis process forms phagosomes that destroy microorganisms, and releases cytokines to increase immune activity (Biller & Takahash, 2018). This is in accordance with El-Kassas et al. (2022), who showed an increase in AF fed moringa leaf powder in tilapia. Furthermore, RB involves the production of reactive oxygen species (ROS) by neutrophils and macrophages to kill phagocytosed pathogens. ROS serve as a non-specific defense and antioxidant response to eliminate pathogens after phagocytosis (Harikrishnan et al., 2018).

This is in accordance with the results of the study which showed a positive correlation between TL and both AF and RB parameters. Post-infection, TL, AF, and RB of MOLS treatment were higher than the control treatment ($P<0.05$) to strengthen the immune system against pathogens. This is in line with Mansour et al. (2018), as feeding with moringa leaves increases the RB value in *Sparatus aurata* fish. The increase is related to the active compounds contained in MOLS. Flavonoids can stimulate an increase in immune responses and an increase in lymphokine proliferation by T cells that stimulate phagocytic cells (Martinez et al., 2019).

Bacterial Count

The highest abundance of lactic acid bacteria was found in the M12.5 treatment at 6.01 ± 0.05 log CFU

g^{-1} which was significantly different ($P<0.05$) from the K and M50 treatments. However, it was not significantly different ($P>0.05$) with the M25 treatment. The process of nutrient absorption in the intestine can be supported by gut microflora that improve digestion. Lactic acid bacteria (LAB) residing in the gut play a role in fermenting carbohydrates to produce lactic acid, which not only improves fish immunity but also fights pathogenic bacteria and supports the digestive process (Ringo et al., 2018). The addition of MOLS at a concentration of 12.5 g kg^{-1} was shown to increase the abundance of lactic acid bacteria (LAB) compared to the control. Anudeep & Radha (2018), mentioned that *M. oleifera* also contains oligosaccharides (fructooligosaccharides and malto-oligosaccharides), which can stimulate the growth of LAB organisms (Mensah et al., 2012). Furthermore, this increase in beneficial gut microflora correlates with the elevated non-specific immune parameters observed in the M12.5 group, including total leukocytes (TL), phagocytic activity (AF), and respiratory burst (RB). The synergistic effect between gut microbiota modulation and immune activation suggests that MOLS improves tilapia health through both microbiological and immunological pathways.

The total population of *E. tarda* bacteria in the target organs of tilapia is presented in Table 7. The population of *E. tarda* bacteria at H+1 to H+7 after the challenge test showed a decrease. In the K-treatment, no *E. tarda* was detected in either the kidney or liver, indicating a healthy fish condition without exposure to pathogens. In contrast, in K+, a very high population of *E. tarda* was found, amounting to 7.86 ± 0.03 log CFU/g in the kidney and 8.04 ± 0.07 log CFU/g in the liver on the first day after challenge (H+1PC), and slightly decreased to 7.70 ± 0.00 and 7.86 ± 0.02 log CFU/g on the seventh day (H+7PC). The addition of feed containing MOLS was able to significantly reduce the population of *E. tarda* ($P<0.05$) compared to K+. Treatment M12.5 showed the highest effectiveness, with the number of bacteria in the kidney decreasing to 7.31 ± 0.02 log CFU/g at H+1PC and 7.12 ± 0.01 log CFU/g at H+7PC, while in the liver it was recorded at 7.77 ± 0.01 and 7.55 ± 0.02 log CFU/g respectively. Interestingly, the M25 and M50 treatments did not provide a greater reduction effect, and even tended to be less effective than M12.5. Overall, the population of *E. tarda* in the liver tended to be higher than the kidney in all treatment groups, indicating that the liver is an organ that is more susceptible to bacterial growth.

The *E. tarda* population was significantly lower in the kidney and liver organs with the addition of MOLS were less than the K+ treatment. MOLS is proven to

be able to suppress the growth of *E. tarda* bacteria. This is in accordance with El-Sheekh *et al.*, (2019), also argue that moringa leaf extract has significant antibacterial activity against various types of gram-positive and gram-negative bacteria. Giving natural immunostimulants can reduce the total plate count of bacteria in fish through an increase in the immune system and antibacterial activity (Harikrishnan *et al.*, 2018). Alkaloids contained in MOLS work by inhibit-

ing enzymes that play a role in the DNA replication process. Inhibition of DNA replication functions so that bacteria cannot divide themselves so that growth is inhibited. In addition, alkaloids can also interfere with the formation of cross-bridges of the components that make up peptidoglycan, so that the cell wall layer is not completely formed and causes cell death (Riyadi *et al.*, 2021).

Table 7. Total population (mean \pm SD, n=3) of *E. tarda* bacteria in the kidney and liver of tilapia of H + 1PC = day one post challenge; H + 7PC = day seven post challenge

Target Organ	Treatment	Population of <i>E. tarda</i> (log CFU/g)	
		H + 1PC	H + 7PC
Kidney	K-	0.00 \pm 0.00 ^a	0.00 \pm 0.00 ^a
	K +	7.86 \pm 0.03 ^d	7.70 \pm 0.00 ^d
	M12.5	7.31 \pm 0.02 ^b	7.12 \pm 0.01 ^b
	M25	7.35 \pm 0.03 ^b	7.15 \pm 0.04 ^b
	M50	7.43 \pm 0.02 ^c	7.30 \pm 0.07 ^c
Liver	K-	0.00 \pm 0.00 ^a	0.00 \pm 0.00 ^a
	K +	8.04 \pm 0.07 ^d	7.86 \pm 0.02 ^d
	M12.5	7.77 \pm 0.01 ^b	7.55 \pm 0.02 ^b
	M25	7.82 \pm 0.06 ^b	7.56 \pm 0.06 ^b
	M50	7.94 \pm 0.02 ^c	7.77 \pm 0.02 ^c

Different superscript letters following in the same column indicate significant differences (P< 0.05). K- (negative control), K+ (positive control), M12.5, M25, M50 (moringa leaf simplicia 12.5, 25, 50 g kg⁻¹ feed)

Histopathology

Histopathological observations of tilapia kidney tissue on day 7 post-challenge with *E. tarda* (Figure 1) showed pathological changes, including liquefac-

tive necrosis, characterized by damage to renal tubular structures and cell lysis. Damage was also seen in glomerular and tubular cells, characterized by loss of cell nuclei and irregular structures. Treatments M12.5,

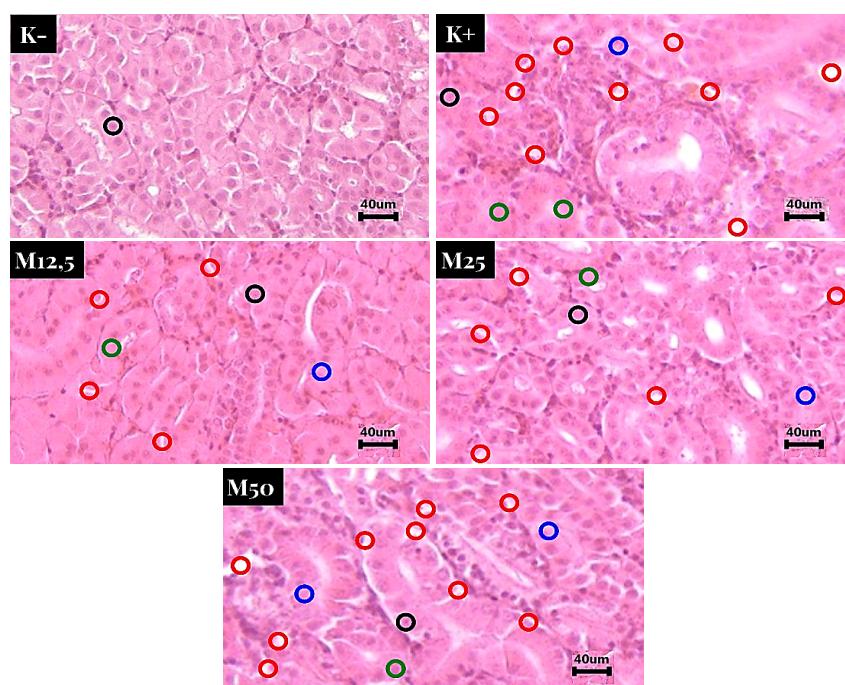


Figure 1. Histopathology of tilapia kidney on day 7 post-challenge with *E. tarda*. (●) necrosis, (○) normal cell, (■) glomerular, (▲) tubular cells.

M25, and M50 showed significantly lower levels of kidney damage compared to the positive control group (K+) ($P<0.05$).

Histopathological examination of tilapia kidney tissue post-*E. tarda* challenge showed necrosis, as detailed in Table 8. *E. tarda* infection causes damage to the kidney and liver organs of tilapia. The damage occurs because these bacteria produce toxins that damage body cells, such as hemosilin and dermatotoxin (Rozi et al., 2022). This infection can trigger inflammation that disrupts the function of these organs. In the kidney, bacteria can cause damage to the glomerulus and tubules, leading to a decrease in filtering function as seen from the loss of cell nuclei and irregular size. The results of histopathology of kidney organs showed that the K+ treatment had lightly damage of 34.89% which was significantly different from the percentage of damage to the simplicia treatment which ranged from 13.86-25.21%. This is supported by El-Sheekh et al. (2019), which states that moringa leaf extract has the potential to repair damaged tissue due to antioxidant and anti-inflammatory contents such as flavonoids, tannins, and alkaloids so that it can prevent excessive damage to tilapia kidney organs after being infected with *E. tarda*.

Histopathological observation of tilapia liver tissue was conducted on day 7 post-challenge with *E. tarda* (data not displayed). Each treatment showed the presence of normal cells and necrotizing cells. The level of damage to tilapia liver tissue in treatments M12.5, M25, and M50 was lighter than the K+ treatment ($P<0.05$).

The histopathological analysis of liver tissue revealed necrosis caused by *E. tarda* infection, as shown in Table 9. Inflammation caused by infection can damage hepatocyte cells, disrupting detoxification and metabolic processes. This damage is further exacerbated if the infection is not treated immediately, which can lead to organ failure. The addition of MOLS shows that it can minimize organ damage caused by *E. tarda* infection. Damage is seen from the amount of necrosis that occurs in the liver. The results of histopathology of the liver showed that the K+ treatment had moderate damage of 45.65% which was significantly different from the percentage of damage in the MOLS treatment which ranged from 14.59-30.44%. This study is in accordance with previous research, feeding with herbal ingredients can reduce damage to fish internal organ tissue through reducing oxidative stress and inflammation (Harikrishnan et al., 2018).

Table 8. Histopathological score of tilapia kidney tissue after challenge with *E. tarda*

Sample	Necrosis(%)	Score	Damage level
K-	9.87±1.63	0	Ordinary
K+	34.89±2.53	1	Lightly damage
M12.5	13.86±2.52	0	Ordinary
M25	18.97±2.35	0	Ordinary
M50	25.21±2.85	1	Lightly damage

K- (negative control), K+ (positive control), M12.5, M25, M50 (moringa leaf simplicia 12.5, 25, 50 g kg⁻¹ feed)

Table 9. Histopathology score of tilapia liver tissue after challenge with *E. tarda*

Sample	Necrosis(%)	Score	Damage level
K-	9.98±2.36	0	Ordinary
K+	45.65±2.58	2	Medium damage
M12.5	14.59±2.12	0	Ordinary
M25	17.88±2.73	0	Ordinary
M50	30.44±2.25	1	Lightly damage

K- (negative control), K+ (positive control), M12.5, M25, M50 (moringa leaf simplicia 12.5, 25, 50 g kg⁻¹ feed)

The survival rate (SR) of tilapia was observed before and after the challenge test. The SR before and after the challenge with *E. tarda* is shown in Figure 2. Before the challenge, SR was 100% for all treatments. After the challenge, SR fluctuated, except for treatment K- (100%). The highest SR was observed in treatment M12.5 ($86.67\pm5.77\%$), significantly different ($P<0.05$) from treatment M50 ($76.67\pm5.77\%$) and K+ ($53.33\pm5.77\%$).

Based on the results of the study, the addition of MOLS to tilapia infected with *E. tarda* showed significant results in SR. The K+ treatment which was given *E. tarda* bacterial infection without the addition of MOLS showed the lowest resistance of $53.33\pm5.77\%$. Giving 12.5 g kg⁻¹ of MOLS showed the highest SR of $86.67\pm5.77\%$ allegedly caused by active compounds in MOLS. Suteja et al., (2016) stated that

flavonoids as antibacterials work by inhibiting DNA gyrase, inhibiting energy metabolism and bacterial growth, causing higher resistance to *E. tarda*. In addition, moringin can insert into bacterial DNA base pairs and inhibit the replication process. Moringin also stimulates oxidative stress, disrupting energy

metabolism, especially carbohydrate metabolism, leading to disruption of the utilization of catabolic products for cell repair. As a result, bacteria are unable to maintain their survival and eventually die (Wen *et al.*, 2022).

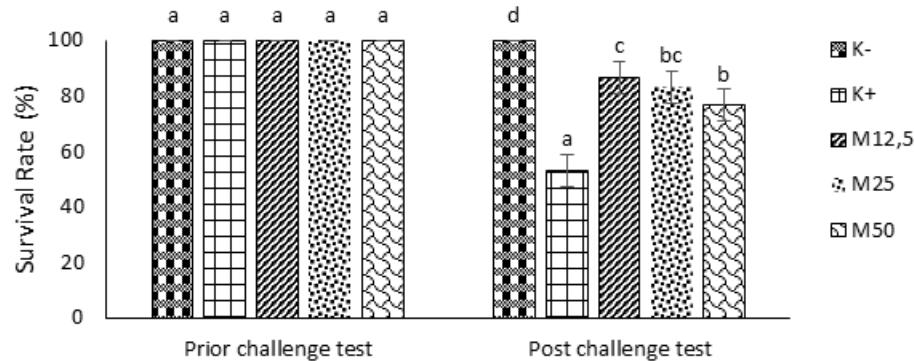


Figure 2. Survival rate of tilapia before and after challenge with *E. tarda*. Different superscripts letters following (mean \pm standard deviation; $n=3$) indicate significant differences ($P < 0.05$). K- (negative control), K+ (positive control), M12.5, M25, M50 (moringa leaf simplicia 12.5, 25, 50 g kg $^{-1}$ feed).

CONCLUSION

Moringa leaf simplicia (MOLS) was able to improve the health status and immune response, as well as the resistance of tilapia to *E. tarda* infection with the optimal dose being 12.5 g kg $^{-1}$ MOLS.

ACKNOWLEDGMENTS

We gratefully acknowledge the support received from the Laboratory of Aquatic Organism Health of Aquaculture Science, IPB University.

REFERENCES

Abdullah, M. S., & Ali, M. (2019). Antibacterial activity of *Moringa oleifera* extracts against bacteria isolated from patients attending General Sani Abacha Specialist Hospital Damaturu. *Journal of Allied Pharmaceutical Sciences*, 1(1), 61–66.

Abd El-Gawad, E. A., El Asely, A. M., Soror, E. I., Abbass, A. A., & Austin, B. (2019). Effect of dietary *Moringa oleifera* leaf on the immune response and control of *Aeromonas hydrophila* infection in Nile tilapia (*Oreochromis niloticus*) fry. *Aquaculture International*, 28, 389–402.

Abdushamad, Y., Yanto, S., & Patang. (2022). Effect of *Moringa oleifera* leaf extract as a controller of *Epistylis* sp. infestation in Nile tilapia (*Oreochromis niloticus*). *Journal of Agricultural Technology Education*, 8(1), 47–56.

Abidin, Z., Huang, H. T., Liao, Z. H., Chen, B. Y., Wu, Y. S., Lin, Y. J., & Nan, F. H. (2022). *Moringa oleifera* leaf extract enhances non-specific immune responses, resistance against *Vibrio alginolyticus*, and growth in whiteleg shrimp (*Penaeus vannamei*). *Animals*, 12(42), 1–20.

Anderson, D. P. (1993). *Disease of Fishes, Book 4: Fish Immunology*. Ross-on-Wye, UK: TFH Publication Ltd.

Anudeep, S., & Radha, C. (2018). Carbohydrates of *Moringa oleifera* seeds. *International Journal of Research and Analytical Reviews*, 5(4), 101–108.

Arora, D. S., Jemimah, G. O., & Harpreet, K. (2013). Bioprospecting of moringa (Moringaceae). *Journal of Pharmacognosy and Phytochemistry*, 1(6), 190–193.

Auwal, M. M., Yelwa, M. J., Abubakar, I., Umar, B. J., Anchau, G. H., & Tanimu, B. F. (2019). *Oriental Journal of Physical Sciences*, 4(2), 65–69.

Ayunin, Q., Budianti, Andayani, S., & Pratiwi, D. C. (2020). Health condition analysis of catfish (*Pangasius* sp.) infected by *Edwardsiella tarda* bacteria. *Journal of Aquaculture and Fish Health*, 9(2), 164–172.

[BSN] National Standardization Agency. (2009). *Black Nile tilapia seed (*Oreochromis niloticus* Bleeker) – Distribution seed class (SNI 7550:2009)*. Jakarta: BSN.

Barus, J. G., Santosa, P. E., & Septianova, D. (2017). Effect of soaking duration with bay leaf (*Syzygium polyanthum*) as a preservative on Total Plate Count and *Salmonella* in broiler meat. *Journal of Live-*

stock Research and Innovation, 1(3), 42–47.

Biller, J. D., & Takahashi, L. S. (2018). Oxidative stress and the fish immune system: Phagocytosis and leukocyte respiratory burst activity. *Annals of the Brazilian Academy of Sciences*, 90(7), 3403–3414.

Bintang, Y. E. F., Listiowati, E., Kasprijo, & Dadiono, M. S. (2024). Soaking betel leaf extract on the survival rate and blood profile of tilapia (*Oreochromis niloticus*). *Jurnal Maiyah*, 3(3), 163–173.

Blaxhall, P. C., & Daisley, K. W. (1973). Routine hematological methods for use with fish blood. *Journal of Fish Biology*, 5(6), 771–781.

Borgonovo, G., De Petrocellis, L., Moriello, A. S., Bertoli, S., Leone, A., Battezati, A., Mazzini, S., & Bassoli, A. (2020). Moringin, a stable isothiocyanate from *Moringa oleifera*, activates the somatosensory and pain receptor TRPA1 channel *in vitro*. *Molecules*, 25(976), 1–12.

Caldini, N. N., Cavalcante, D. D. H., Filho, P. R. N. R., & Docarmo, M. V. (2015). Feeding Nile tilapia with artificial diet and dried bioflocs biomass. *Acta Scientiarum. Animal Sciences*, 37(4), 335–341.

Dawood, M. A. O., Koshio, S., Ishikawa, M., & Yokogama, S. (2015). Interaction effects of dietary supplementation of heat-killed *Lactobacillus plantarum* and α-glucan on growth performance, digestibility and immune response of juvenile red sea bream, *Pagrus major*. *Fish & Shellfish Immunology*, 45(1), 33–42.

Divyagnaneswari, M., Christyapita, D., & Dinakaran, M. R. (2007). Enhancement of non-specific immunity and disease resistance in *Oreochromis mossambicus* by *Solanum trilobatum* leaf fractions. *Fish & Shellfish Immunology*, 23, 249–253.

Dotta, G., De Andrade, J. I. A., Gonçalves, E. L. T., Brum, A., Mattos, J. J., Maraschin, M., & Martins, M. L. (2014). Leukocyte phagocytosis and lysozyme activity in Nile tilapia fed a supplemented diet with natural extracts of propolis and *Aloe barbadensis*. *Fish & Shellfish Immunology*, 39, 280–284.

Dwicahyani, T., Sumardianto, & Rianingsih, L. (2018). Bioactivity test of sea cucumber *Holothuria atra* extracts as antibacterial agent for *Staphylococcus aureus* and *Escherichia coli*. *Jurnal Pengolahan dan Bioteknologi Hasil Perikanan*, 7(1), 15–24.

Ebeling, J. M., Timmons, M. B., & Bisogni, J. J. (2006). Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. *Aquaculture*, 257, 346–358.

Elala, A. N. M., & Ragaa, N. M. (2015). Eubiotic effect of a dietary acidifier (potassium diformate) on the health status of cultured *Oreochromis niloticus*. *Journal of Advanced Research*, 6(4), 621–629.

Elbahnaswy, S., & Elshopakey, G. E. (2020). Differential gene expression and immune response of Nile tilapia (*Oreochromis niloticus*) challenged intraperitoneally with *Photobacterium damsela* and *Aeromonas hydrophila* demonstrating immunosuppression. *Aquaculture*, 526, 735364.

El-Sheekh, M. M., Abou-El-Souod, G. W., Abomohra, A. E. F., Eladel, H. M., & El-Shemy, H. A. (2019). Antioxidant and anti-inflammatory potential of *Moringa oleifera* leaves in ameliorating oxidative stress and tissue damage in rats. *South African Journal of Botany*, 121, 39–46.

Fardiaz, S. (1993). *Food Microbiology Analysis* (in Indonesian). Jakarta, Indonesia: Raja Grafindo Persada.

Fitriany, J., & Saputri, A. I. (2018). Iron deficiency anaemia. *Malikussaleh Journal of Medicine and Health*, 4(2), 1–14.

Food and Agriculture Organization. (2024). *Fishery and aquaculture statistics yearbook 2021*. Rome, Italy: FAO. <https://doi.org/10.4060/cc9523en>

Hariati, S., Wahjunirum, D., Yuhana, M., Tarman, K., Effendi, I., & Saputra, F. (2018). Antibacterial activities of sea extract *Nodulisporium* sp. Kt29 against *Vibrio harveyi*. *Jurnal Pengolahan Hasil Perikanan Indonesia*, 21(2), 250–257.

Harikrishnan, R., Naafar, A., Musthafa, M. S., Ahamed, A., Arif, I. A., & Balasundaram, C. (2018). Effect of *Agaricus bisporus*-enriched diet on growth, hematology, and immune protection in *Clarias gariepinus* against *Flavobacterium columnare*. *Fish & Shellfish Immunology*, 73(10), 245–251.

Hendriana, A., Hikmah, P. N., Iskandar, A., Ramadhani, D. E., Kusumanti, I., & Arianto, A. D. (2022). Tilapia (*Oreochromis niloticus*) farming: A case study of grow-out business at Tambah H. Umar Faruq, Sidoarjo, East Java. *Jurnal Ilmiah Satya Minabahari*, 8(1), 1–11.

Ikalinus, R., Widayastuti, S. K., & Setiawih, N. L. E. (2015). Phytochemical screening of ethanolic extract from moringa (*Moringa oleifera*) stem bark. *Indonesia Medicus Veterinus*, 4(1), 71–79.

Indriasari, D., Dewantoro, E., & Prasetyo, E. (2020). Identification of *Edwardsiella tarda* infecting catfish (*Clarias batrachus*) in fish farms in Sungai Raya District, Kubu Raya Regency. *Borneo Akuatika*, 2(1), 30–38.

Kementerian Kelautan dan Perikanan. (2024). 2023 *Performance Report*. Jakarta, Indonesia: Ministry of Marine Affairs and Fisheries (KKP RI).

Kusuma, A. K., & Aprileili, D. A. (2022). The effect of solvent volume on the yield of katuk leaf extract (*Sauvopus angrogynus* L. Merr). *Jurnal Farmasi Sains dan Obat Tradisional*, 1(2), 125-135.

Madalla, N., Agbo, N. W., & Jauncey, K. (2013). Evaluation of aqueous extracted moringa leaf meal as a protein source for Nile tilapia juveniles. *Tanzania Journal of Agricultural Sciences*, 12(1), 53-64.

Mansour, A. T., Miao, L., Espinosa, C., García-Beltrán, J. M., Francisco, D. C. C., & Esteban, M. A. (2018). Effects of dietary inclusion of *Moringa oleifera* leaves on growth and immune parameters of seabream. *Fish Physiology and Biochemistry*, 44(4), 1223-1240.

Mapanao, R., Jiw Yam, W., Khrueanet, W., & Nithikulworawong, N. (2021). Potential applications of dietary *Moringa oleifera* leaves as growth modulator and immunostimulant against *Aeromonas hydrophila* for farmed *Oreochromis niloticus*. *Indonesian Aquaculture Journal*, 16(2), 109-117. <http://dx.doi.org/10.15578/iaj.16.2.2021.109-117>.

Martinez, G., Mijares, M. R., & de Sanctis, J. B. (2019). Effects of flavonoids and their derivatives on immune cell responses. *Recent Patents on Inflammation & Allergy Drug Discovery*, 13(2), 84-104.

Maulani, R. K., Achmad, M., & Latama, G. (2017). Histological characteristics of seaweed (*Kappaphycus alvarezii*) strains infected by ice-ice disease. *Journal of Fisheries and Marine Science*, 1(1), 45-56.

Maqsood, S., Samoon, M. H., & Singh, P. (2009). Immunomodulatory and growth-promoting effect of dietary levamisole in *Cyprinus carpio* fingerlings challenged with *Aeromonas hydrophila*. *Turkish Journal of Fisheries and Aquatic Sciences*, 9(1), 111-120.

Mensah, J. K., Ikhajiagbe, B., & Emokhor, N. E. E. J. (2012). Phytochemical, nutritional, and antibacterial properties of dried *Moringa oleifera* leaf powder from Edo Central Province, Nigeria. *Journal of Natural Products and Plant Resources*, 2(1), 107-112.

Mohammadian, T., Alishahi, M., Tabandeh, M. R., Jangaran Nejad, A., Karami, E., & Zarea, M. (2019). Effects of autochthonous probiotics from *Tor grypus* intestine and *Lactobacillus casei* on immune-related gene expression. *Aquaculture International*, 27(1), 239-260.

Mustaqien, A., Hardjito, L., & Agugproyono, D. R. (2008). Toxicity assessment of blood clam (*Atactodea striata*). *Jurnal Penelitian Perikanan*, 2(1), 1-12.

Narwiyani, S., & Kurniasih. (2011). Pathogenic comparison of *Edwardsiella tarda* in goldfish (*Carassius auratus*) and Celebes rainbow (*Telmatherina celebensis*). *Jurnal Riset Akuakultur*, 6(2), 291-301.

Novita, W. (2016). Antibacterial activities of betel leaf fraction (*Piper betle* L.) against *Streptococcus mutans* in vitro. *Jambi Medical Journal*, 4(2), 140-155.

Nurhayati, T., Fathoni, M. I., Fatimah, S. N., Tarawan, V. M., Goenawan, H., & Dwiwina, R. G. (2023). Effect of *Moringa oleifera* leaf powder on the hematological profile of male Wistar rats. *Journal of Blood Medicine*, 14, 477-485.

Reed, L. J., & Muench, H. (1938). A simple method of estimating fifty percent endpoints. *The American Journal of Hygiene*, 27(3), 493-497.

Rempe, C. S., Burris, K. P., Lenaghan, S. C., & Junior, C. N. S. (2017). The potential of systems biology to discover antibacterial mechanisms of plant phenolics. *Frontiers in Microbiology*, 8, 422.

Richter, N., Siddhuraju, P., & Becker, K. (2003). Evaluation of nutritional quality of moringa (*Moringa oleifera* Lam.) leaves as an alternative protein source for Nile tilapia (*Oreochromis niloticus* L.). *Aquaculture*, 217(1-4), 599-611.

Ringo, E., Hoseinifar, S. H., Ghosh, K., Van Doan, H., Beck, B. R., & Song, S. K. (2019). Lactic acid bacteria in finfish: An update. *Frontiers in Microbiology*, 9, 1818.

Riskianto, Kamal, S. E., & Aris, M. (2021). Antioxidant activity of 70% ethanol extract of *Moringa oleifera* leaves against DPPH. *Jurnal Pro-Life*, 8(2), 168-177.

Riyadi, F. M., Prajitno, A., Fadjar, M., Syaifurrisal, A., & Fauziyyah, A. I. (2021). Potential of *Moringa oleifera* leaf extract to inhibit growth of pathogenic *Edwardsiella tarda*. *Journal of Aquaculture and Fish Health*, 10(3), 321-330.

Rodrigues, M. V., Falcone-Dias, M. F., Francisco, C. J., David, G. S., da Silva, R. J., & Junior, J. P. A. (2019). Occurrence of *Edwardsiella tarda* in Nile tilapia (*Oreochromis niloticus*) from Brazilian aquaculture. *Acta Scientific Microbiology*, 2(1), 13-19.

Royan, F., Rejeki, S., & Haditomo, A. H. C. (2014). Effects of different salinities on blood profile of tilapia (*Oreochromis niloticus*). *Journal of Aquaculture Management and Technology*, 3(2), 109-117.

Rozi, Prijantono, R. C., & Kusdarwati, R. (2022). Effects of coconut shell liquid smoke on hematol-
ogy of tilapia (*Oreochromis niloticus*) challenged
with *Aeromonas hydrophila*. *Journal of Aquacul-
ture Science*, 7(1), 22–37.

Sapara, T. U., Waworuntu, O., & Juliatri. (2016). Anti-
bacterial effectiveness of water balsam (*Impatiens
balsamina* L.) leaf extract against *Porphyromonas
gingivalis*. *Pharmacon*, 5(4), 10–17.

Steffens, W. (1989). Biological and ecological charac-
teristics of *Tor douronensis* in Lake Kerinci and
Merangin River. *Jurnal Penelitian Indonesia*, 5(4),
1–6.

Subryana, N., Wardiyanto, & Susanti, O. (2020). Ap-
plication of *Moringa oleifera* leaf extract to in-
crease nonspecific immunity of *Oreochromis
niloticus* infected by *Aeromonas hydrophila*. *Jour-
nal of Aquaculture and Fish Health*, 9(3), 194–203.

Suprayudi, M. A., Alim, S., Fauzi, I. A., EkaSari, J.,
Setiawati, M., Junior, M. Z., & Tacon, A. G. (2017). Evaluation of hydrolyzed rubber seed meal as a
dietary protein source for Nile tilapia (*Oreochromis niloticus* L.). *Aquaculture Research*,
48(7), 3801–3808.

Suprayudi, M. A., Faisal, B., & Setiawati, M. (2013). Growth of red tilapia fed diets containing organic
selenium. *Jurnal Akuakultur Indonesia*, 12(1), 48–
53.

Suteja, I. K. P., Rita, W. S., & Gunawan, I. W. G. (2016). Identification and activity testing of flavonoid
compounds from trembesi (*Albizia saman*) leaf
extract as antibacterial agents against *Escherichia coli*. *Chemical Journal*, 10(1), 141–148.

Syawal, H., Effendi, I., & Kurniawan, R. (2021). Im-
provement of hematological profile in catfish
(*Pangasius hypophthalmus*) by adding herbal
supplements in feed. *Jurnal Veteriner*, 22(1), 16–
25.

Unegbu, V., Nkwoemeka, N., Okey-Ndeche, F., &
Obum-Nnadi, C. (2020). Phytochemical and anti-
bacterial properties of *Moringa oleifera* leaf ex-
tracts on *Escherichia coli* and *Staphylococcus
aureus*. *Nigerian Journal of Microbiology*, 34(1),
5145–5152.

Wedemeyer, G., & Yasutake, W. T. (1977). *Clinical
methods for the assessment of the effects of
environmental stress on fish health* (Technical
Paper Vol. 89). Washington, DC: U.S. Fish and
Wildlife Service.

Wen, Y., Li, W., Su, R., Yang, M., Zhang, N., Li, X., Li,
L., Sheng, J., Tian, Y. (2022). Multi-target antibac-
terial mechanism of moringin from *Moringa
oleifera* seeds against *Listeria monocytogenes*.
Frontiers in Microbiology, 3, 1–13.

Windarti, Effendi, I., & Kurniawan, R. (2023). Addi-
tion of moringa leaves to feed to improve growth
performance and feed use in striped catfish
(*Pangasianodon hypophthalmus*). *Transactions of
the Chinese Society of Agricultural Machinery*,
54(5), 196–208.

Wolf, J. C., Baumgartner, W. A., Blazer, V. S., Camus,
A. C., Engelhardt, J. A., Fournie, J. W., Frasca, S.
J., Groman, D. B., Kent, M., & Khoo, L. H. (2015). Nonlesions, misdiagnoses, missed diagnoses, and other interpretive challenges in fish histopathol-
ogy studies: A guide for investigators, authors,
reviewers, and readers. *Toxicologic Pathology*, 43,
297–325.

Yanuartono, Purnamaningsih, H., Nururrozi, A.,
Indarjulianto, S., & Raharjo, S. (2019). Recombi-
nant human erythropoietin: Benefits in veterinary
medicine. *Jurnal Sain Veteriner*, 37(1), 49–60.

Yuangsai, B., Klahan, R., & Charoenwattanasak, S.
(2014). Partial replacement of soybean meal pro-
tein with moringa seed cake (*Moringa oleifera*)
in bocourt's catfish (*Pangasius bocourtii*).
Songklanakarin Journal of Science and Technology,
36(2), 125–135.