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ABSTRACT

Abundance indices based on nominal CPUE do not take into account confounding factors such as
fishing strategy and environmental conditions, that can decouple any underlying abundance signal in
the catch rate. As such, the assumption that CPUE is proportional to abundance is frequently violated.
CPUE standardisation is one of the common analyses applied. The aims of this paper were to provide
a statistical modelling framework for conducting CPUE standardisations using the Observer Program
data for bigeye tuna, yellowfin tuna, albacore and southern bluefin tuna, and provide a comparison in
the trends between the nominal CPUEs and their standardised indices obtained. The CPUE
standardisations were conducted on the Observer Program collected between 2005 and 2007, by
applying GLM analysis using the Tweedie distribution. The results suggested that year, area, HBF and
bait factors significantly influenced the nominal CPUEs for the four tuna species of interest. Some
extreme peaks and troughs in the nominal time series were smoothed in the standardised CPUE time
series. The high degree of temporal variability that is still shown in the standardised CPUE trends
suggests that the data are too sparse to give any meaningful indication of proxy abundance.
Nevertheless, this may also suggest that variables used in the GLMs do not sufficiently account for all
of the confounding factors, or abundance may indeed be truly variable.
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INTRODUCTION

It is essential to understand temporal trends in its
abundance in order to manage a fish population
effectively (Ortega-Garcia et al., 2003, Chen et al.,
2004, Maunder et al., 2006a). For commercial longline
vessels, CPUE data are the main source of abundance
information (Maunder & Punt, 2004, Maunder et al.,
2006b, Ward & Hindmarsh, 2007, Bigelow et al., 1999)
as fishery-independent data are impractical to collect
(Bishop, 2006, Maunder et al., 2006b). Abundance
indices based on nominal CPUE do not take into
account confounding factors such as fishing strategy
(Bach et al., 2000) (including fishing power &
catchability (Ward, 2008)), and environmental
conditions, that can decouple any underlying
abundance signal in the catch rate (Polacheck, 1991,
Hinton & Nakano, 1996, Hampton et al., 1998). As
such, the assumption that CPUE is proportional to
abundance is frequently violated (Maunder et al.,
2006b) and, in turn, the relative abundance indices
based on nominal CPUE data can be misleading
(Maunder & Punt, 2004) or even problematic (Beverton
& Holt, 1957, Hilborn & Walters, 1991, Walters, 2003,
Ortega-Garcia et al., 2003). Thus, effects of those
confounding factors need to be statistically filtered
out in order to be able to use the time series of CPUE
as a proxy of relative abundance with any accuracy
(Polacheck, 1991).

Accordingly, CPUE standardisation is one of the
most common analyses applied to yield a proxy index
of fish abundance (Maunder & Punt, 2004, Bigelow &
Maunder, 2007, Maunder et al., 2006b). Several
methods have been developed (e.g. Gulland, 1956,
Beverton & Holt, 1957, Robson, 1966, Honma, 1974)
to standardise CPUE, including generalised linear
modelling (GLM), generalised additive modelling
(GAM), generalised linear mixed modelling (GLMM)
and the delta approach1; however, GLM is the
predominant approach (Dowling & Campbell, 2001,
Maunder et al., 2006a, Maunder and Punt, 2004, Su
et al., 2008), having been applied in many fisheries
(Venables & Dichmont, 2004) to standardise CPUE
data (e.g. Goñi et al., 1999, Tascheri et al., 2010). Su
et al. (2008) applied GLM, GAM and a delta approach
to standardise BET CPUE on Taiwanese distant-water
longline fishery, and suggested that any of the three
methods individually is sufficiently flexible to capture
the key features of the data.

A large proportion of zero catch observations for
target and non-target species can commonly occur
in catch and effort data (Maunder & Punt, 2004).
This was found in the Observer Program data (collected
from the Indonesian trial Observer Program on longline
vessels operating in the Indian Ocean out of Benoa
Fishing Port). It is important to include these zeros in
the CPUE standardisation in estimating the trends in

1 The delta approach is a standardisation method that treats zero values separately and

assumes positive values to have a lognormal distribution Stefansson, G. (1996)Analysis of

groundfish survey abundance data: combining the GLMand delta approaches. ICES J. Mar.

Sci., 53, 577-588.
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catch rates and understanding the process behind
the trends (Minami et al., 2007). CPUE standardisation
using statistical distributions that allow for zero
observations has been applied in some cases (e.g.
Candy, 2004, Basson & Farley, 2005) by fitting GLM
using Tweedie family distributions. The Tweedie
distribution can deal with zero values and can sensibly
incorporate zero catch data with non-zero catch data
into a single model (Candy, 2004). In addition, the
Tweedie distribution can accommodate larger ranges
of models for count data than the Poisson, Negative
Binomial, Zero-inflated Poisson and Zero-inflated
Negative Binomial models (Minami et al., 2007). The
Tweedie distribution approach was therefore adopted
within this paper.

The aims of this paper were to provide a statistical
modelling framework for conducting CPUE
standardisations using the Observer Program data for
bigeye tuna, Thunnus obesus (BET), yellowfin tuna,
T. albacares (YFT), albacore, T. alalunga (ALB) and
southern bluefin tuna, T. maccoyii (SBT), and provide
a comparison in the trends between the nominal
CPUEs and their standardised indices obtained. Since
the Observer Program data set is only a short time
series, meaningful temporal trends are not anticipated.
However, the exercise of standardisation is valid both
in terms of providing a template for undertaking
standardisations as long-term Observer Program data
become available over time as the Observer Program
evolves.

This paper attempts to develop recommendations
for ongoing monitoring and analysis, and providing a
statistical modelling framework to undertake CPUE
standardisations for future data.

METHODS

The standardisation should incorporate all of the
extraneous variables influencing CPUE in order to take
into account their impacts. The effect of these
variables is then eliminated and a standardised value
reconstructed that is hoped to be directly proportional
to abundance. Obviously the extent to which this can
occur is limited by the amount of available data. The
CPUE standardisations in this paper were conducted
by applying GLM analysis using the Tweedie
distribution. For each tuna species, standardised
CPUEs were then plotted together with the nominal
CPUE. This enabled comparison of the nominal and
standardised CPUEs.

Data Overview

A total of 793 set-by-set data span from August
2005 to December 2007 were obtained from
Indonesia’s Indian Ocean trial Observer Program on
tuna longline vessels based at Benoa Fishing Port.
41 records were excluded due to incomplete
information on fishing techniques and environmental
data. The Observer Program data consist of catch
and effort data, information on fishing practices, and
environmental data (summarised below).

Catch and effort data

Catch and effort data were recorded as the number
of fish and the number of hooks recorded per set,
respectively. The catch for this fishery consists of four
tuna species, BET, YFT, ALB and SBT, and other
byproduct species. The analyses in this chapter are
only concerned with the four tuna species. Species-
specific catch (number of fish) was used as the
response variable and the log of effort (number of
hooks) was assigned as an offset in the GLM
analyses.

Fishing practices

Factors considered under the category of targeting
strategies include the number of hooks between floats
(HBF), the bait species/combination used, the area
fished, the start time of the set, and gear
characteristics. However, different fishing practices
were sometimes used by vessels to target the same
species (pers comm. with the observers, 2007). These
different practices may result in dissimilar
catchabilities that will confound the nominal CPUE
trend (Maunder & Punt, 2004). Thus, incorporating
these fishing practices into the GLM analysis is
imperative. The following information on fishing
strategies was recorded and included in GLM
analyses:

a. Fishing area
Fishing position was recorded by latitude and
longitude for each set (Figure 1). The fishing area
was divided into five subarea delineations (Figure
1, Table 1). Subareas were used to aggregate the
small amount of data available, which otherwise
resulted in numerous empty cells (i.e. with no
fishing activity recorded) when the fishing area was
classified by 1 x 1 degree or 5 x 5 degree blocks.
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b. HBF or number of branch lines
HBF information was available for each recorded
set, and varied from 4–21 HBF.The HBF information
was incorporated as a categorical covariate in the
GLM. It was assigned as 1 if HBF <10 hooks
(surface longline), and 2 if HBF e”10 hooks (deep
longline) (Table 1).

c. Bait combination
There are six main bait species used as follows:
Lemuru, Sardinella spp. (LMR); Milkfish, Chanos
chanos (MIL); Scad mackerel, Decapterus spp.
(RUS); Gizzard shad, Anodontostoma chacunda
(CHG); Frigate Tuna, Auxis spp. (FRI); and Squid,
Loligo spp. (CMI). However, the fishers sometimes
deployed a combination of these bait species within
one catenary (between two floats). There were 22
bait combinations recorded and each bait
combination was assigned to a unique bait type
index. The 22 bait types were included as a
categorical variable in the GLM (Table 1).

d. Vessel identification (Vessel Id)
AVessel identification factor embraces all attributes
of a vessel, such as size, capacity and electronic
equipment, and its crew that determine the success
of the vessel’s fishing activity, such as the ability
of the crew to find good fishing grounds and to use
the gear efficiently (Campbell & Hobday, 2003). It
is worthwhile taking into account the effect of each
individual vessel on catch rates. The Vessel
Identification factor included in the GLM as a
categorical variable (Table 1).

e. Start time of set
The time at which the set commenced was
employed to represent fishing time and was taken
into account as a categorical variable in the GLM
and assigned into 6 levels (Table 1). This
assignment of the start time of set was adopted
from Campbell & Hobday (2003).
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Figure 1. Fishing positions recorded by the observers (dot) and the five area categories used in the CPUE
standardisation (shaded area)

f. Lengths of float line, branch line and main
line
In addition to the HBF, the actual fishing depth of
the longline is influenced by the lengths of the float
line and branch line (Bigelow et al., 2002), and by
the length of main line between floats (Suzuki et
al., 1977). However, for the Benoa-based longline
vessels this latter gear change is impractical to
undertake within one trip (pers comm. with the
observers, 2007). To eliminate effects of these gear
configurations on the nominal CPUEs, these three
variables are included as continuous covariates in
the GLM analysis (Table 1).

g. Age of main line

Bjordal & Lokkeborg (1996) stated that, generally,
new main lines have considerably higher catch
rates than used main lines, although the reason
for this has never been investigated properly.
Therefore, age of the main line was incorporated
as a continuous variable in the GLM analysis
(Table 1) to take into account its effect (if any) on
the catch rates.
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Environmental data

Types of environmental data included in the CPUE
standardisation are as follows:

a. Phase of the moon

Moon phase information is available as a daily
index of moon fraction for all recorded sets and
ranges between 0 and 1 (from new moon to full
moon). The moon phase was incorporated in the
CPUE standardisation as a continuous variable in
the GLM analysis. To account for the effect of cyclic
behaviour, the moon phase was incorporated as a
new variable called “MOON” in the GLM analysis
(Table 1), which is defined by the following function
(equation 1):

MOON =sin (2 x moon phase) + cos (2 x moon
phase) ...........................................1)

where 2 translates the variable into radians and
moon phase ranges between 0 and 1.

b. Sea surface temperature (SST)
Sea surface temperature information was
calculated using the Spatial Dynamics Ocean Data
Explorer (SDODE) in Matlab and was available for
each set. To account for a possible non-linear
(quadratic) relationship between CPUE and SST,
the SST was assigned as a quadratic variable
(expressed in R as poly (SST, 2)) and incorporated
as a continuous variable in the GLM analysis
(Table 1).

c. Sea Conditions
Sea conditions were incorporated using the
Beaufort scale (created by Sir Francis Beaufort in
1805) as a continuous variable in the GLM analysis
(Table 1). 



Factor Level Category Type

Year 1 2005 Categorical

2 2006

3 2007

Quarter 1 January-March Categorical

2 April-June

3 July-September

4 October-December

Area 1 5°-10°S; 110°-120°E Categorical

2 2°-10°S; 120°-135°E

3 10°-20°S; 105°-120°E

4 20°-35°S; 80°-95°E

5 20°-35°S; 95°-110°E

Hooks between floats (HBF) 1 HBF <10 Categorical
2 HBF =10 and above

Bait 1 to 22 22 bait combinations Categorical
Vessel Id 1 to 23 23 unique vessels Categorical
Start time of setting 1 before 4 am Categorical

2 4 am to 8 am
3 8 am to noon
4 noon to 4pm
5 4pm to 8pm
6 8pm to midnight

Sea conditions 1 to 12 See Beer (1996) Continuous
Length of float line - - Continuous
Length of branch line - - Continuous
Length of main line - - Continuous
Age of main line - - Continuous
MOON - - Continuous
Sea surface temperature (SST) - - Continuous

Table 1. All variables (factors and covariates) used in GLM analysis
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Generalised linear model

The exploratory variables described previously are
summarised in Table 1. The first seven variables were
fitted as categorical (factor) variables while variables
8-14 were fitted as continuous (numerical) variables
in the GLM model (equation 2).

The catch by each level of each categorical variable
was examined to determine level/s of each categorical
variable that only have zero catches for the species
of interest. These level/s were excluded as being
uninformative prior to the GLM analyses for that
species (e.g. if there are only zero catches for the
species of interest using a certain bait type, then that
bait type is excluded).

CPUE was defined as the catch, in numbers of
fish, per 100 hooks of effort. Since the CPUE is a
ratio of two random variables, modelling the distribution
of CPUE can be complicated (Candy, 2004).
Therefore, catch data and the log of effort were used
as the response variable and an offset in the GLM
model, respectively, and a log-link function was used
(Candy, 2004, Basson & Farley, 2005). The catch data
was modelled using the Tweedie distribution or the
compound Poisson-Gamma distribution (see
Jørgensen (1997) & Candy(2004) for a full explanation
of the Tweedie distribution). Subsequently, the catch
was modelled using all variables mentioned above as
follows (equation 2), referred to as the “full model”,
hereafter:
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where c is a constant (intercept), i corresponds to
the ith data record,

n
is the coefficient for the nth

variable and e is the error term (normally distributed).
Each categorical variable has a separate coefficient
value for each level of the variable, with j corresponding
to the jth coefficient value for the associated level of
the categorical variable.

The Tweedie distribution has a power variance
function, with the power parameter (k) (Candy, 2004,
Basson & Farley, 2005). Values of k for the Tweedie
distributions range between 1 and 2, which is
appropriate for zero catch observations (Basson &
Farley, 2005). k equals to 0, 1 and 2 associated with
normal, Poisson and gamma distributions respectively

(Candy, 2004, Basson & Farley, 2005). The first step
of the GLM process was to select the value of k (1 <
k < 2) using the randomised quantile residual
diagnostic. This was done by running the full model
(equation 2) for a range of k values between 1 and 2.
The value of k with the flattest plot in the Scale-location
of the quantile residuals, and the most normally
distributed quantile residuals in the normal QQ plot
and the histogram of residuals, was chosen. To enable
the use of the Tweedie distributions within the GLM
framework and to produce the quantile residual
diagnostic plots, respectively, the “Tweedie” and
“Statmod” functions in R were used.

Once the k-value had been determined, the
selection of the best model/s was done using the
stepwiseAIC (Akaike Information Criterion) in R using
the “MASS” package. The best model was the one
with the lowest AIC value. Models that are within 5
AIC units of the best model, while yielding qualitatively
similar CPUE trends, are also included in a short-list
of “best options” (pers comm. with Mark Bravington,
Natalie Kelly and Marinelle Basson).A summary table
of GLM results for the best and full model is provided,
but it should be emphasised that the model selection
was done using the stepwise AIC, not the statistics
in the summary table, as stepwise AIC is preferable
toANOVAsignificance to determine the optimal model/
s (pers comm. with Mark Bravington, Natalie Kelly &
Marinelle Basson). For the best model, the diagnostic
plots were again checked to confirm that no counter-
intuitive trend were present. These diagnostic plots
are presented in Appendix 1.

Interaction terms between year and area, and
between quarter and area were trialled to be
incorporated in the GLM analysis. However, as a result
of a lack of data across all possible quarter-area
combinations, the coefficients of the interaction terms
were infinite and this resulted in null value of the
indices. Therefore, these interaction terms were not
included in the final GLM.

The abundance indices for each of the four tuna
species were estimated by reconstructing a
standardised CPUE value using the “predict” function
in R (“Stats” package) on a revised dataset, where
those exploratory variables not equal to Year and
Quarter were set constant. The constant values
chosen for the confounding factors were typically the
median value of each of the variables. Nominal CPUEs
and standardised indices were normalised relative to
their respective grand means in order to yield directly
comparable relative values.


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RESULTS

The “best model options” for BET, YFT, ALB and
SBT as determined according to the stepwise AIC
criterion are presented in Table 2-Table 5. The best
model – that has the smallest AIC, for each species -
was used to predict the standardised CPUEs (Figure
2). The randomised quantile residual diagnostic for
the best model is given in Appendix 1. The results of
analyses of variance for the best (for BET, YFT and
SBT) models are given in Appendix 2. The results of
the best model for each data set are summarised in
Table 6. Shaded cells indicate the variables included
in the best model for each species.

The nominal CPUE trend for the four tuna species
was significantly influenced by different factors
associated with fishing practices and/or environmental

conditions. For BET, the Area, Bait, Vessel Id, and
length of main line covariates were highly significant
(p-value <0.1%), followed by the age of the main line
and SST (p-value<5%). Area, Quarter, Vessel Id,
length of branch line and length of main line were
highly significant (p-value <0.1%) for the YFT GLM,
followed by the start time of set covariate (p-value<1%).
For ALB GLM, Year, Area, Bait, Vessel Id and length
of main line were highly significant (p-value <0.1%)
followed by length of branch line and MOON (p-value
<1%), and then Quarter and SST (p-value <5%).Area,
Quarter and Bait had a strongly significant influence
on the nominal CPUE for SBT (p-value <0.1%),
followed by length of float line and length of branch
line (p-value <5%). Area, Quarter, Bait, Vessel Id and
length of main line covariates are the most common
variables that significantly influenced the nominal
CPUEs of the four tuna species in GLMs.

Table 2. List of model option for BET in order of increasing AIC (such that Model 1 is the statistically optimal
model). Model option no. 4 is used as an alternative model (with the inclusion of Year factor).

No. Model Options AIC
1. Catch ~ Area + Quarter + Bait + Vessel_Id + Start_time_of_setting +

sea_conditions + Length_of_float_line + Length_of_main_line +
Age_of_main_line + poly(SST, 2) + offset(log(TotalHook))

3124.26

2. Model 1 + Length_of_branch_line 3125.96
3. Model 1 + Length_of_branch_line + MOON 3127.72
4. Model 1 + Year + Length_of_branch_line + MOON 3129.17

No. Model AIC
1. Catch ~ Area + Quarter + Vessel_Id + Start_time_of_setting +

Length_of_branch_line + Length_of_main_line +
offset(log(TotalHook))

2175.07

2. Model 1 + HBF 2176.03
3. Model 1 + HBF + Length_of_float_line 2177.24
4. Model 1 + HBF + Length_of_float_line + Age_of_main_line 2179.03
5. Model 1 + Year + HBF + Sea_conditions + Length_of_float_line +

Age_of_main_line + MOON + poly(SST, 2)
2188.51

Table 3. List of model option for YFT in order of increasing AIC (such that Model 1 is the statistically optimal
model). Model option no. 5 is used as an alternative model (with the inclusion of Year factor).

No. Model AIC

1. Catch ~ Year + Area + Quarter + Bait + Vessel_Id + Length_of_float_line
+ Length_of_branch_line + Length_of_main_line + Age_of_main_line +
MOON + poly(SST, 2) + offset(log(TotalHook))

2266.21

2. Model 1 without Age_of_main_line 2266.23

3. Model 1 + HBF 2267.31

4. Model 1 + HBF + Sea_conditions 2269.23

Table 4. List of model option for ALB in order of increasing AIC (such that Model 1 is the statistically optimal
model).
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No. Model AIC
1. Catch ~ Area + Quarter + Bait + Length_of_float_line +

Length_of_branch_line + MOON + offset(log(TotalHook))
796.81

2. Model 1 + Length_of_main_line 797.6
3. Model 1 + Length_of_main_line + Age_of_main_line 799.32
4. Model 1 + HBF + Length_of_main_line + Age_of_main_line 801.15
5. Model 1 + Year + HBF + Vessel_Id + Start_time_of_setting + Sea_conditions +

Length_of_main_line + Age_of_main_line
820.84

Table 5. List of model option for SBT in order of increasing AIC (such that Model 1 is the statistically optimal
model). Model option no. 5 is used as an alternative model (with the inclusion of Year factor).

Table 6. Summary of significance level for each
explanatoryvariable in the GLMs fitted using
the data set for each species.

BET YFT ALB SBT

Year ***

Area *** *** *** ***

Quarter *** * ***

HBF

Bait *** *** ***

Vessel Id *** *** ***

Start time of setting **

Sea conditions

Length_of_float_line *

Length_of_branch_line *** ** *

Length_of_main_line *** *** ***

Age_of_main_line *

MOON **

poly(SST, 2) * *
Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1

‘ ’ 1
Variable included in the best GLM model (i.e. the

smallest AIC)

Quarterly nominal and standardised CPUEs
(relative abundance indices) between 2005 and 2007
are shown in Figure 2, and the predicted values of the
standardised CPUEs and the associated standard
errors are given in Table 7. The standardised CPUEs
were predicted using the best models for each species
(Table 2-Table 5).The nominal and standardised values
are re-scaled relative to their respective grand means.
Since only a short time series was available, it is
difficult to infer any strong temporal or seasonal
abundance patterns, but this approach forms a
template for undertaking standardisations as a longer
time series of data becomes available.

The best models for BET, YFT and SBT (Table 2,
Table 3 and Table 5) do not include the Year factor.
The next best models that have the lowest AIC while
including the Year effect and have the smallest AIC
(termed “alternative models” were plotted for those
species (not presented in this paper). The
standardised CPUEs for 2007 were slightly higher for
BET and YFT, and more than double for SBT in any
quarters relative to those in 2006. However, the
comparison within this chapter used the best model
for all species.

Comparing the standardised CPUE trends between
species for the GLMs, the standardised time series
was relatively stable for BET, YFT and SBT, except
for the two spikes for BET, YFT and SBT (in the first
quarter of 2006 and 2007) (Figure 2). The ALB
standardised time series was variable but consistently
higher in quarter 3 of 2006 and 2007. This pattern in
the standardised indices had previouslybeen obscured
by the fishing practices, most significantly by fishing
area, bait, vessel, length of main line and length of
branch line (in order of decreasing statistical
significance) (Table6).

When comparing nominal and standardised
trends, the general effect of the standardisation was
to smooth extreme peaks and troughs in the nominal
CPUE time series. The spikes and troughs in the BET
nominal time series that were smoothed by
standardisation were spikes in quarter 3 of 2005,
quarters 3 and 4 of 2007, and a trough in quarter 3 of
2006 and quarter 1 of 2007 (Figure 2). For the ALB
nominal time series, the spikes in quarter 4 of 2006
and quarter 2 of 2007 were smoothed, such that
consistent peaks in quarter 3 became evident in the
standardised time series. For YFT, the spikes in
quarters 2 and 3 of 2006 were smoothed, but a peak
occurred in the standardised indices in quarters 1 and
2 of 2007.
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Table 7. Predicted values of standardised CPUEs for BET, YFT, ALB and SBT with its associated standard
errors. These standardised CPUEs are from very scarce data, thus they are not for use in any stock
assessments.

BET YFT ALB SBT

CPUE Index SE CPUE Index SE CPUE Index SE CPUE Index SE

- - - - - - - -
- - - - - - - -

0.0276 0.4947 0.0015 0.0144 0.1038 2.5783 0.0020 0.0376
0.0255 0.4600 0.0007 0.0073 0.0700 1.7295 0.0058 0.1111
0.0529 0.9650 0.0024 0.0229 0.0190 0.4334 0.0217 0.4045
0.0344 0.6185 0.0029 0.0277 0.0614 1.4697 0.0014 0.0318
0.0276 0.4947 0.0015 0.0144 0.0714 1.8032 0.0020 0.0376

0.0255 0.4600 0.0007 0.0073 0.0482 1.2126 0.0058 0.1111
0.0529 0.9650 0.0024 0.0229 0.0616 1.3832 0.0217 0.4045
0.0344 0.6185 0.0029 0.0277 0.1993 4.6942 0.0014 0.0318
0.0276 0.4947 0.0015 0.0144 0.2317 5.8719 0.0020 0.0376
0.0255 0.4600 0.0007 0.0073 0.1563 3.9513 0.0058 0.1111

DISCUSSION

Across the four tuna species, temporal trends of
nominal CPUEs were significantly influenced by
different factors either associated with fishing practices
and/or environmental conditions. Area, Quarter, Bait,
Vessel Id and length of main line covariates were the
most common variables that significantly influenced
the nominal CPUEs of the four tuna species. Similarly,
effects of area and season (month or quarter) were
reported to significantly influence nominal CPUEs of
YFT caught byJapanese longline vessels (from 1975-
1998) (Nishida, 2000) and Japanese, Korean and
Taiwanese longline vessels (from 1970-1992) (Nishida,
1995) operating in the Western Indian Ocean.
Importantly, by eliminating the effect of fishing
strategies and environmental variables from the CPUE
signal, some extreme peaks and troughs in the
nominal CPUE time series were smoothed in the
standardised CPUE time series. The high degree of
temporal variability that is still shown in the
standardised CPUE trends further suggests that the
data are too sparse give an accurate indication of
abundance. However, this may also suggest that
variables used in the GLMs do not sufficiently account
for all of the confounding factors, or the abundance
may indeed be truly variable.

In this current standardisation, several models
including interaction terms between year and area,
between quarter and area, and between year and
quarter were trialled. However, coefficients of the
interaction terms were infinite and this resulted in null
indices. This again was due to the data scarcity when

it was grouped in combination of the two effects (i.e.
year and area, quarter and area, and year and quarter).
Therefore, these interaction terms were removed from
the GLM. As more data become available in future, it
will be more feasible to include interaction terms in
the GLMs. Such interactions are likely to be
significant, given the experience of other researchers
working with larger data sets. Maunder & Punt, (2004)
stated that interactions among factors commonly
occur when standardising catch and effort data (e.g.
Okamoto & Miyabe, 1998, Matsumoto, 2000, Nishida,
2000, Okamoto & Shono, 2008), meaning that simple
interpretations of the main effect cannot be used as
the basis to develop an index of abundance (Maunder
& Punt, 2004).

In conducting CPUE standardisations, the short time
series currently available for the Observer Program
data means it is difficult to infer any strong temporal
or seasonal abundance patterns. In addition, given
that spatial and fleet coverage limitations of the data
set, it should be emphasised the resulting indices
would not yield meaningful results if used to inform a
stock assessment. Thus the standardised indices
presented in this chapter should not be used as input
to any stock assessments. Once more data become
available, clear temporal and seasonal patterns might
become apparent. However, the aim here was to
develop a protocol for undertaking standardisations
as a longer time series of data becomes available. In
the interim, the current standardisation can give some
indication of which factors may significantly influence
the nominal time series.
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CONCLUSION

It was suggested that year, area, HBF and bait
factors significantly influenced the nominal CPUEs
for the four tuna species of interest. By eliminating
the effect of fishing strategies and environmental
variables from the nominal CPUE trend, some extreme
peaks and troughs in the nominal time series were
smoothed in the standardised CPUE time series. The
high degree of temporal variability that is still shown
in the standardised CPUE trends suggests that the
data are too sparse to give any meaningful indication
of proxy abundance. Nevertheless, this may also
suggest that variables used in the GLMs do not
sufficiently account for all of the confounding factors,
or abundance may indeed be truly variable.
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Appendix 1. Randomised quantile residual diagnostic for BET, YFT, ALB and SBT GLMs

a. BET c. ALB

b. YFT d. SBT
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Appendix 2. Analysis of variance for BET, YFT, ALB and SBT GLMs using the best models.

1. BET indices

Df Deviance Resid. Df Resid. Dev F Pr(>F)

NULL 789 2652.82

Area 4 708.46 785 1944.36 91.5532
< 2.2e-

16 ***

Quarter 3 0.26 782 1944.1 0.0455 9.87E-01

Bait 18 292.71 764 1651.39 8.4059
< 2.2e-

16 ***

Vessel Id 22 194.59 742 1456.8 4.5721 3.88E-11 ***

Start time of setting 5 16.74 737 1440.06 1.7302 1.25E-01

Sea conditions 1 1.82 736 1438.24 0.9425 3.32E-01

Length_of_float_line 1 0.12 735 1438.12 0.0612 0.80465

Length_of_main_line 1 38.38 734 1399.74 19.8385 9.75E-06 ***

Age_of_main_line 1 9.04 733 1390.7 4.6744 0.03094 *

poly(SST, 2) 2 17.55 731 1373.14 4.5372 0.01101 *
Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

2. YFT indices

Df Deviance Resid. Df Resid. Dev F Pr(>F)

NULL 742 2543.28

Area 4 326.54 738 2216.74 37.986 < 2.2e-16 ***

Quarter 3 183.68 735 2033.06 28.488 < 2.2e-16 ***

Vessel Id 21 539.01 714 1494.05 11.943 < 2.2e-16 ***

Start time of setting 5 44.61 709 1449.44 4.151 1.01E-03 **

Length_of_branch_line 1 25.79 708 1423.65 12.002 5.64E-04 ***

Length_of_main_line 1 35.64 707 1388.01 16.585 5.18E-05 ***

3. ALB indices

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Df Deviance Resid. Df Resid. Dev F Pr(>F)

NULL 768 4345.1

Year 2 395.3 766 3949.7 100.223
< 2.2e-
16 ***

Area 4 1651.1 762 2298.7 209.2847
< 2.2e-
16 ***

Quarter 3 19.8 759 2278.9 3.3381 0.018981 *

Bait 17 639.9 742 1639 19.0865
< 2.2e-
16 ***

Vessel_Id 21 231.7 721 1407.2 5.5955 4.33E-14 ***

Length_of_float_line 1 2.1 720 1405.1 1.0811 0.298795

Length_of_branch_line 1 18.9 719 1386.1 9.6082 0.002013 **

Length_of_main_line 1 93.7 718 1292.4 47.5201 1.20E-11 ***

Age_of_main_line 1 3.6 717 1288.8 1.819 0.177856

MOON 1 17.9 716 1271 9.0595 0.002705 **

poly(SST, 2) 2 16.8 714 1254.1 4.2674 0.014377 *
Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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4. SBT indices
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Df Deviance Resid. Df Resid. Dev F Pr(>F)

NULL 536 855.73

Area 3 210.4 533 645.33 34.7271 < 2.2e-16 ***

Quarter 3 70.16 530 575.17 11.5808 2.34E-07 ***

Bait 11 153.12 519 422.05 6.8927 6.76E-11 ***

Length_of_float_line 1 11.5 518 410.55 5.6968 1.74E-02 *

Length_of_branch_line 1 12.9 517 397.64 6.3883 1.18E-02 *

MOON 1 5.1 516 392.55 2.5243 1.13E-01
Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


