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ABSTRACT

Black marlin (Makaira indica) is commonly caught as frozen by-catch from Indonesian tuna
longline fleets. Its contribution was estimated around 18% (~2,500 tons) from total catch in the
Indian Ocean. Catch-per-unit-of-effort (CPUE), as calculated based on commercial catch records,
is one of the essential components for running stock assessment. Despite it always being
associated with abundance index (number or biomass), little is known on how environmental
factors might contribute to it. The objective of the study is to investigate the impact of physical
attributes of the ocean on the distribution of black marlin. Data were collected from August 2005 to
December 2017 through a scientific observer program (2005-2017) and a national observer
program (2016-2017). Most of the monitored vessels were based in Benoa Port, Bali. In general,
time trends of abundance fluctuated, although there had been an increasing trend since 2010,
then dropped significantly into a relatively similar figure in 2005. Even though Sea Surface
Temperature (SST) and Sea Surface Height (SSH) were statistically significant when incorporated
into the models, it allegedly wasn't the main driver in determining the abundance of black marlin.
Instead, it was more likely driven by spatio-temporal factors (year and area) rather than environmental
changes.
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INTRODUCTION Sri Lanka, and India. The latest stock assessment
result, as calculated using Just Another Bayesian

Black marlin (Makaira indica) is an apex predator,
highly migratory species (Hill et al., 2016; Williams
etal., 2012), and considered as a non-target species
of industrial and artisanal fisheries in Indonesian tuna
longline fishery (Setyadji & Nugraha, 2012; Widodo
etal., 2016). It ranked second after swordfish in terms
of catch composition (Setyadji et al., 2012). Itis also
known to have high commercial value in the tropical
and subtropical Indian and Pacific Ocean (Nakamura,
1985). In the Indian Ocean, it was caught in the area
between 20°N and 45°S, but more often off the western
coast of India and the Mozambique Channel (I0TC-
WPB16, 2018).

In the Indian Ocean, black marlin were largely
caught by gillnets (~59%), followed by longlines
(~19%), with remaining catches recorded under troll
and hand lines (IOTC-WPB16, 2018). Landing
Contribution of black marlin from Indonesian fleet (e.g.
longline, handline, and gillnet fishery) between 2013-
2017 was around 18% (IOTC-WPB16, 2018) of total
catch in the Indian Ocean, ranked fourth after Iran,
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Biomass Assessment (JABBA), suggested that black
marlin stock of the Indian Ocean is not overfished but
subject to overfishing (IOTC-WPB16, 2018). However,
the result came with a high degree of uncertainty,
which was driven by the increasing catch of offshore
gilinet fisheries from I.R. Iran, the combination of
gillnet and longline fishery from Sri Lanka, and the
presence of deep-freezing longline from Japan and
Taiwan off the western coast of India and the
Mozambique Channel (IOTC-WPB17, 2019).

Estimations of relative abundance indices enable
the use of more detailed models, which could be
pivotal in determining the black marlin stock status
and its trend. However It is often delivered with some
uncertainties, probably due to its over-reliance on
spatial (i.e. fishing location), temporal (i.e. year,
month, and/or quarter), and operational factors (i.e.
length of branchlines, number of hooks between
floats), since most of the CPUE analyses are based
on the fishery-dependent data, such as logbook. On
the other hand, environmental factors are rarely
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involved in the analyses, probably due to poor
understanding on the biology of related species,
especially on their distribution.

Nevertheless, incorporating environmental factors
into the analyses have been attempted by several
authors. Sajeevan (2013) investigated the effect of
monsoon and lunar cycle toward catch rates of billfish
around Andaman and Nicobar Islands. In addition,
Rathnasuriya, Gunasekara, Haputhanthri, and
Rajapaksha (2016) put sea surface temperature (SST),
sea surface chlorophyll (SSC), and dynamic height
of the sea surface (SSH) as possible covariates
affecting the abundance of billfishes in Sri Lankan
waters. Moreover, Wang and Nishida (2013) found that
various environmental factors, i.e. Oscillation Index,
Dipole Mode Index, Southern Oscillation Index, sheer
currents, amplitude of the shear current, thermocline
depth, and temperature gradient only contributed
around 15-20% to the nominal CPUE of blue marlin
(Makaira mazara) and striped marlin (Tetrapturus
audax) in the Indian Ocean. Despite the recent
investigations, no attempt has been made on black
marlin (M. indica), Indonesian tuna longline fishery in
particular.

In this paper, we attempt to investigate the impact
of limited environmental variables on the abundance
of black marlin, especially from the north eastern
Indian Ocean area which are the core fishing ground
for Indonesian tuna longline fishery. Results are useful

to indicate the relative abundance of black marlin,
which is an important fishery resource in the Indian
Ocean.

MATERIALS AND METHODS
Fishery and Environmental Data

A total of 2,887 set-by-set data span in detail 1x1
degree latitude and longitude grid from August 2005
to December 2017 were obtained from Indonesian
scientific observer and national observer programs that
cover commercial tuna longline vessels, mostly based
in Port of Benoa, Bali. Fishing trips usually last from
three weeks to three months. Main fishing grounds
cover from west to southern part of Indonesian waters,
stretching from 75°E to 35°S (Figure 1). Italso informed
concerning the number of fish caught by species, total
number of hooks, number of hooks between floats
(HBF), start time of the set, start time of haul, soak
time, and geographic position where the longlines were
deployed into the water. The response variable in the
models was the catch of black marlin(number of fish).
Year and quarter were used as categorical (factor)
explanatory variables. Additional information was used
as explanatory variables as follows:

a. Area stratification

Area stratification method was applied using GLM-
tree approach proposed by Ichinokawa & Brodziak
(2010); The algorithm showed that the area divided
into four categories (Figure 1).
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Figure 1. Area stratification used in the analysis based on GLM-tree algorithm.

b. Number of hooks between floats (HBF)
Number of hooks between floats was set as a
categorical variable in the model. It was assigned as
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1 if HBF <10 hooks (surface longline) and 2 if HBF
>10 hooks (deep longline) following (Sadiyah et al.,
2012);
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c. Soak time
Soak time was calculated as the time elapsed

between the start of the fishing setting and the start

of hauling of the longline. Soak time in the model was
treated as continuous variable, thus the values were
rounded to the nearest integer;

d. Moon phases (29.5 days) were simply categorized
into two periods, light and dark, based on Akyol
(2013). The light periods consist of the first/last
quarters, waxing and waning gibbous, and full
moon, while new moon and waning crescent are
included into the dark periods.

e. Daily Mean Sea Surface Temperature (SST) was
provided by the NOAA/OAR/ESRL PSD, Boulder,
Colorado, USA, from their Web site at https://
www.esrl.noaa.gov/psd/. The spatial resolution was
a quarter-degree global grid. To address any
possibilities of non-linear (quadratic) relationship
between CPUE and SST, it was assigned as a
guadratic variable (expressed in R as poly (SST,
2)) (Sadiyah et al., 2012) and incorporated as a
continuous variable.

f. Daily Mean Sea Surface Height (SSH) was
extracted from Copernicus Marine Service
Products, namely
GLOBAL_REANALYSIS_PHY_001_025 for 2005-
2015 datasets and
GLOBAL_ANALYSIS_FORECAST_PHYS 001 015
for 2016-2017 datasets. The spatial resolution was
a quarter-degree global grid. To address any
possibilities of non-linear (quadratic) relationship
between CPUE and SSH, it was assigned as a
guadratic variable (expressed in R as poly (SSH,
2)) and incorporated as a continuous variable.

Modeling Approach

We considered four GLM models for investigating
the abundance of black marlinin terms of its relation
to environmental variables. These models were
Poisson without environmental (P1), Poisson with
environmental (P2), Negative Binomial without
environmental (NB1), and Negative Binomial with
environmental (NB2). The configuration of the base
model is presented as follows:

Catch = u + Year + Quarter + Catygr + Moon
+ Soak Time + AreaTree
+ of fset(log(Hooks) + ¢

Catch was defined in the number of black marlin
caught, effort was the offset from the natural logarithm

of the total number of hooks per set and error
distribution followed either Poisson or negative
binomial. We used a forward approach to select the
explanatory variables and the order they were included
in the full model. The first step was to fit simple models
with one variable at a time. The variable included in
the model with lowest residual deviance was first
selected. As the second step, the model with the
selected variable then received other variables one at
a time, and the model with lowest residual deviance
was again selected. This procedure continued until
residual deviance did not decrease as new variables
were added to the previous selected model. Finally,
all main effects and the first order interactions were
considered and a backward procedure based on
Akaike Information Criterion (AIC) (Akaike, 1974) and
Bayesian Information Criterion (BIC) (Schwarz, 1978)
were used to select the final models for the six
approaches. We also rely on AIC and BIC to compare
these models.

The qualities of the fittings were assessed by
comparing the observed frequency distributions of the
number of fishes caught to the predicted frequency
distribution, as calculated using the selected models.
Kolmogorov-Smirnov test was used to assess if the
differences of the two distributions (observed and
predicted) were significant. Maps were produced using
QGIS version 2.14 (QGIS Developer Team, 2018) and
the statistical analyses were carried out using R
software version 3.3.3 (R Core Team, 2018),
particularly the package pscl (Zeileis et al., 2008),
Ismeans (Lenth, 2018), MASS (Venables & Ripley,
2002), Hmisc (Harrell Jr. et al., 2018), and statmod
(Giner & Smyth, 2016).

RESULTS AND DISCUSSION
Results

Descriptive Catch Statistic

Scientific observers and national observers
recorded catch and operational data at sea following
Indonesian tuna longline commercial vessels from
2005-2017 and 2016-2017, respectively. The combined
dataset contained 115 trips, 2887 sets, 3499 days-
at-sea, and more than 3.5 million hooks deployed,
respectively (Table 1). The spatial data were
distributed mainly in the eastern Indian Ocean with
most of the observation conducted in the area of
southern Indonesian waters, between 0°-35°S and 75°-
125°E.
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Table 1. Summary of observed fishing effort from Indonesian tuna longline fishery during 2005-2017. Results
are pooled and also presented by year of observation. Operational parameters are means (upper
entries) and standard deviations (lower parenthetical entries).

Year Trips Sets Days at Sea Total Hooks Hooks per Set Hooks per Float
2005 9 108 117 157,065 1,454.31 (151.8) 18.6 (1.5)
2006 13 401 401 577,243 1,439.51 (214.9) 11.2 (3.9
2007 13 265 258 406,135 1,532.58 (326.5) 14.0 (4.4)
2008 15 370 404 483,662 1,307.19 (385.9) 13.0 (4.5)
2009 13 283 288 323,042 1,141.49 (234.7) 121 (4.9)
2010 6 165 152 220,394 1,335.72 (457.5) 13.6 (5.2)
2011 3 105 111 110,384 1,051.28 (173.9) 12.0 (0.0)
2012 8 198 192 290,265 1,465.98 (559.1) 141 (2.3)
2013 7 225 198 252,919 1,124.08 (210.4) 12.7 (2.1)
2014 5 167 265 193,740 1,160.12 (176.9) 15.0 (2.0)
2015 5 148 241 172,463 1,165.29 (145.2) 141 (3.2)
2016 8 244 383 324,068 1,314.89 (146.4) 15.2 (6.4)
2017 10 218 489 279,204 1.214.04  (395.3) 17.2 (4.8)

CPUE Data Characteristics

Black Marlin (BLM) nominal CPUE (fish/1000
hooks) series is presented in Figure 2. In general,
the catches of BLM during the last decade were highly
variable, but showing an increasing trend. The lowest

CPUE recorded was in 2005 (0.05+0.19), as the
highest one was in 2009 (0.22+0.59). On the other
hand, the proportion of zero catch for BLM was also
very high, varying annually between a minimum of
0.82+0.38 in 2011 and a maximum of 0.95+0.23 in
2017 with an average value of 0.89+0.30.
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Figure 2. The proportion of zero BLM catches (left panel) and nominal CPUE series (N/1000 hooks) for BLM
from 2005 to 2017 (right panel). Remarks: Vertical bars refer to the standard errors.

Influence of SST and SSH

The number of parameters (k), AIC, BIC, logarithm
of the likelihood (logLik), number of predicted zero
catches, and p values of Kolmogorov-Smirnov test
were calculated using two model structures (Poisson
and Negative Binomial) with two different conditions
(with or without incorporating environmental factors).
The summary is shown in Table 2. The interactions
among variables were excluded to avoid overfitting on
the models. Adifference of 2 units in the AIC values is
not a strong evidence that one model is better than
the others (Burnham & Anderson, 2002). Hence, a
simple negative binomial (NB) with incorporating SST
and SSH into the model was preferred as it had the
lowestAIC (2343.95) and BIC (2499.11) values (Table 2).

44

The number of zero catches in the database is
2,575, however, both Poisson and NB models were
inaccurate in terms of predicting it, as shown by the
differences between the observed and the predicted
number of zero catches. Bias of all the models,
including the simple ones, were insignificant as
indicated by the p values (>0.05).

The negative binomial model with environmental
factors was selected as the best profile to describe
the effect of environmental changes to the abundance
of black marlin. In addition, adding environmental
factors only contributed around 2.5%-3% of deviance
explained and insufficient to lower the AIC value in all
models, although it was considered as influential
contributors among variables (Table 3).
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Table2. Summary of indicators as calculated using six model structures: Poisson without environmental
(P1), Poisson with environmental (P2), Negative Binomial without environmental (NB1) and Negative
Binomial with environmental (NB2). The terms in the column at left indicate: number of parameters
(k), Akaike (AIC) and Bayesian (BIC) Information Criteria, logarithm of the likelihood (logLik), number
of predicted zero catches (zero), p values as calculated using a Kolmogorov-Smirnov test and
deviance explained.
Parameters Model Structures
P1 P2 NB1 NB2
k 21 26 21 25
AlC 2492.75 2454.96 2369.46 2343.95
BIC 2618.08 2610.12 2500.76 2499.11
logLik -1225.38 -1201.48 -1162.73 -1145.97
zero 2523 2520 2538 2573
p.value 0.7371 0.6713 0.9717 1.0000
Deviance explained 14.51% 17.03% 13.67% 16.00%
Table 3.  List of deviance table from all models (P1, P2, NB1 and NB2).
1. Model P1
Residual
Df Deviance Residual Df Deviance Pr(>Chi)
NULL 2886 2050.3
AreaTree 3 184.495 2883 1865.8 2.20E-16 ok
Year 12 52.501 2871 1813.3 5.05E-07 rxk
Moon2 1 12.672 2870 1800.7 0.0003712 b
Cat_HBF 1 12.607 2869 1788.1 0.0003843 rokk
Quarter 3 17.989 2866 1770.1 0.0004422 ol
2. Model P2
Df Deviance Residual Df Residual Deviance Pr(>Chi)
NULL 2886 2050.3
AreaTree 3 184.495 2883 1865.8 2.20E-16 ok
Year 12 52.501 2871 1813.3 5.05E-07 ok
poly(SSH,2) 2 33.395 2869 1779.9 5.60E-08 ok
Moon2 1 13.125 2868 1766.8 0.0002913 ok
Cat_HBF 1 14.507 2867 1752.3 0.0001397 ok
Quarter 3 16.732 2864 1735.6 0.0008023 ok
Soak_Time 1 2.405 2863 1733.2 0.1209584
poly(SST,2) 2 10.902 2861 1722.3 0.0042915 **
3. ModelNB1
Df Deviance Residual Df Residual Deviance Pr(>Chi)
NULL 2886 1310.0
AreaTree 3 127.445 2883 1182.6 2.20E-16 ok
Year 12 38.775 2871 1143.8 0.0001146 rkk
Moon2 1 7.648 2870 1136.2 0.0056837 *x
Cat_HBF 1 7.792 2869 1128.4 0.0052485 *x
Quarter 3 8.366 2866 1120.0 0.0390269 *
4. Model NB2
Df Deviance Residual Df  Residual Deviance Pr(>Chi)
NULL 2886 1344.7
AreaTree 3 130.971 2883 1213.8 2.20E-16 ik
Year 12 39.559 2871 1174.2 8.51E-05 ok
poly(SSH,2) 2 28.12 2869 1146.1 7.83E-07 ok
Moon2 1 6.647 2868 1139.4 0.00993 o
Cat_HBF 1 8.224 2867 1131.2 0.004134 o
Quarter 3 7.599 2864 1123.6 0.055065 .
poly(SST,2) 2 7.925 2862 1115.7 0.019017 *
Remarks: Asterisk sign (*) means the significance level, i.e. 0 ***' 0,001 **' 0,01 ‘*'
45
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The estimation of standardized catch rates is
shown in Figure 3. Overall, the time trends of
standardized CPUE were highly fluctuated although

there was an indication of increasing trend since 2010,
but then dropped significantly in 2017 into relatively
similar level as in 2005.
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Figure 3. Standardized catch per unit effort (CPUE) calculated using Negative Binomial with environmental
factors (NB2). Values were scaled by dividing them by their means.

In addition, the level of uncertainty (showed by the
large range of confidence intervals) must be closely
put into consideration, even though SST and SSH
were significantly contributedIt looked like the
abundances of black marlin were driven by other
factors, such as the presence of large sum zero-catch-
per-setin the data, rather than environmental factors.
The lack of spatial coverage also hampered the
calculation and perhaps inflicted some biases.

Discussions

Based on the previous study, the model was
allegedly influenced more by the number of zero-catch-
per-set instead of spatio-temporal factors (Setyadii
et al., 2018). Moreover, lack of spatial coverage and
the fact that black marlin is not a target species
hamper the calculation. A few workarounds can be
done in order to reduce unwanted zero catches, i.e.,
using core area (Yokoi et al., 2016). This area, which
is a 1x1 degree-based catch block with a minimum
constant catch for at least 6 years (doesn’t need to
be consecutive), could reduce the proportion of zero
catch from 93% to 58%. Other solutions, such as
incorporating random effect into General Linear Mixed
Model (GLMM) (ljima, 2017), using more complex
model, i.e., delta-lognormal (Wang, 2017), or applying
to smooth in the zero-inflated negative binomial model
(Minami et al., 2007), could be considered.
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However, unlike tunas, which are usually forming
school, billfishes (i.e. marlins and swordfish) prefer
to get together within specific oceanographic features
such as temperature fronts (Brill & Lutcavage, 2001).
Itis likely due to their life characteristics, where they
usually live scarcely and solitary, despite being at
the larval or adult stage (Au, 1998; West, 2004).
Therefore, it is difficult to estimate their abundance
just by merely limited catch and effort data from just
a single gear (i.e. longline). In order to get a better
understanding amid the “true abundance” of billfishes,
we put some environmental factors as additional
covariates into the model.

Both sea surface temperature (SST) and sea
surface height (SSH) are closely related to the
abundance of tuna and billfish species (Lan et al.,
2017; Lumban-Gaol et al., 2015; Su et al., 2011,
2015). In this study, high CPUE occurred between
29-31°C, wherein CPUE propensity linearly rose with
SSH. Overall, SST was considered as the best
predictor for determining the spatial distribution for
most marlin species (Su et al., 2011, 2015), although
there was a weak relationship between SST and SSH.
Even though SST played an important role in this
study, it actually did not explain the model a lot. In
fact, it only explained merely just 3.4% of total residual
deviance in model NB2. Instead, AreaTree, Year, and
SSH were the main predictors, contributing 57.2%,
17.3%, and 12.3%, respectively.
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CONCLUSION

Despite some constraints related to the data
quality (spatial coverage), in general Sea Surface
Temperature (SST) and Sea Surface Height (SSH)
were statistically significant when incorporated into
the models, but it allegedly wasn’t the main driver in
determining the abundance of black marlin. Instead,
it was more likely driven by the effects of spatio-
temporal factors (year and area).
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