IMPROVED DESIGN AND ACCURACY OF REAL-TIME WATER QUALITY AND FILTERING SYSTEMS FOR APPLICATION IN IOT-BASED AQUACULTURE
Abstract
Maintaining optimal water quality is essential in fish farming, as fluctuations in key parameters, such as pH, turbidity, and dissolved compounds, can lead to stress, disease, and even fish death. This study aimed to design and develop an Internet of Things (IoT)-based water quality monitoring and filtration system that can operate in real-time to support the sustainability of aquaculture. This system integrated pH, turbidity, total dissolved solids (TDS), and ultrasonic sensors with Arduino Uno and ESP32 microcontrollers. Sensor data was transmitted in real-time to an Android application, which displayed it on an LCD, allowing users to monitor water quality and receive alerts when parameters deviated from optimal thresholds. The test results demonstrated a high level of sensor accuracy, specifically 96.51% for pH, 98.19% for TDS, and 97.03% for turbidity, as determined through comparisons with laboratory equipment, commercial devices, and manual measurements. The effectiveness of the filtration system was also proven to be significant: turbidity was reduced by an average of 58.87%, TDS decreased by 26.80%, and pH values became more stable within the optimal range for aquaculture with an improvement of 7.3%. This system was able to maintain the variation of the main water quality parameters within the ranges for raw and drinking water stipulated in Indonesian Government Regulation No. 22 of 2021 and Regulation of the Minister of Health No. 492 of 2010. This improved design is arguably more efficient than conventional methods because it reduces the need for labor and provides early warning of changes in water quality.
Menjaga kualitas air yang optimal sangat penting dalam budidaya ikan, karena fluktuasi parameter utama seperti pH, kekeruhan, dan kandungan zat terlarut dapat menyebabkan stres, penyakit, hingga kematian pada ikan. Penelitian ini bertujuan untuk merancang dan mengembangkan sistem pemantauan dan penyaringan kualitas air berbasis internet of things (IoT) yang dapat beroperasi secara real-time untuk mendukung keberlanjutan akuakultur. Sistem ini mengintegrasikan sensor pH, turbiditas, total dissolved solids (TDS), dan sensor ultrasonik dengan mikrokontroler Arduino Uno dan ESP32. Data sensor ditransmisikan secara real-time ke aplikasi Android dan ditampilkan melalui LCD, memungkinkan pengguna memantau kualitas air dan menerima peringatan ketika parameter menyimpang dari ambang batas optimal. Hasil pengujian menunjukkan tingkat akurasi sensor yang tinggi, yaitu 96,51% untuk pH, 98,19% untuk TDS, dan 97,03% untuk kekeruhan, berdasarkan perbandingan dengan alat laboratorium, perangkat komersial, dan pengukuran manual. Efektivitas sistem filtrasi juga terbukti signifikan: kekeruhan berkurang rata-rata 58,87%, TDS menurun sebesar 26,80%, dan nilai pH menjadi lebih stabil dalam kisaran optimal untuk akuakultur dengan perbaikan sebesar 7.3%. Sistem ini telah memenuhi ketentuan Peraturan Pemerintah No. 22 Tahun 2021 dan Peraturan Menteri Kesehatan No. 492 Tahun 2010 untuk kualitas air baku dan minum. Sistem ini terbukti lebih efisien dibanding metode konvensional karena mengurangi kebutuhan tenaga kerja dan memberikan peringatan dini terhadap perubahan kualitas air.
Keywords
Full Text:
PDFReferences
Adhawati, S. S., & Nuryanti, D. M. (2021). Economic valuation of seaweed cultivation in mangrove ecosystem waters Nunukan district: The outer islands of the Indonesia-Malaysia border. Plant Archives, 21(1), 1924–1928. https://doi.org/10.51470/plantarchives.2021.v21.s1.312
Arepalli, P. G., & Naik, K. J. (2024). A deep learning-enabled IoT framework for early hypoxia detection in aqua water using light weight spatially shared attention-LSTM network. Journal of Supercomputing, 80(2), 2718–2747. https://doi.org/10.1007/s11227-023-05580-x
Ariadi, H., Linayati, & Mujtahidah, T. (2023). Oxygen transfer rate efficiency of paddle wheel aerators in intensive shrimp ponds. BIO Web of Conferences, 74, 01012. https://doi.org/10.1051/bioconf/20237401012
Bareta, B. P. C., Harijanto, A., & Maryani. (2021). Rancang bangun alat ukur sistem monitoring pH, temperatur, dan kelembapan akuarium ikan hias berbasis Arduino Uno. Jurnal Pembelajaran Fisika, 10(1), 1–7. https://doi.org/10.19184/jpf.v10i1.21900
Boyd, C. E., & McNevin, A. A. (2021). Aerator energy use in shrimp farming and means for improvement. Journal of the World Aquaculture Society, 52(1), 6–29. https://doi.org/10.1111/jwas.12753
Cokrowati, N., Risjani, Y., Andayani, S., & Firdaus, M. (2023). The potential and development of seaweed cultivation in Lombok: A review. Jurnal Biologi Tropis, 23(1), 202–212. https://doi.org/10.29303/jbt.v23i1.4654
Desnanjaya, I. G. M. N., & Nugraha, I. M. A. (2022). Design and build body temperature detection and personal identity recognition through E-ID card and photo based on IoT. International Symposium on Electronics and Smart Devices (pp. 1-5). IEEE. https://doi.org/10.1109/ISESD56103.2022.9980725
Desnanjaya, I. G. M. N., Wiguna, I. K. A. G., Putra, I. D. P. G. W., & Nugraha, I. M. A. (2024). Peningkatan kualitas dan ekonomi nelayan melalui pelatihan penggunaan alat pengering ikan (dryfitech) menggunakan teknologi IoT. Jurnal Masyarakat Mandiri, 8(5), 5224–5236. https://doi.org/https://doi.org/10.31764/jmm.v8i5.26445
Hakim, A. R., Fauzi, A., Hidayat, F., Handoyo, W. T., & Waryanto. (2023). Application of automated paddlewheel aerator in shrimp culture pond; effect on water quality, energy cost and biomass. BIO Web of Conferences, 74, 01007. https://doi.org/10.1051/bioconf/20237401007
Hariyadi, H., Kamil, M., & Ananda, P. (2020). Sistem pengecekan ph air otomatis menggunakan sensor ph probe berbasis arduino pada sumur bor. Rang Teknik Journal, 3(2), 340–346. https://doi.org/10.31869/rtj.v3i2.1930
Iskandar, Y., Wahyuni, R. S., Rohmat, R., Darwis, R., & Oktaviani, I. (2022). Filtrasi air dengan menggunakan alat sederhana untuk menghasilkan air bersih bagi warga desa Cikurutug kecamatan Cireunghas. PengabdianMu: Jurnal Ilmiah Pengabdian Kepada Masyarakat, 7(1), 74–79. https://doi.org/10.33084/pengabdianmu.v7i1.2301
Latukolan, G. J., & Wastumirad, A. W. (2024). Rancang bangun sistem monitoring kualitas air sungai berbasis aplikasi smartphone. Jurnal Teknologi Informasi dan Komunikasi), 8(2), 255–264. https://doi.org/10.35870/jti
Lubis, I., & Pulungan, A. B. (2023). Rancang bangun alat monitoring kualitas air berbasis online. Jurnal Teknik Elektro Indonesia, 4(2), 462–472. https://doi.org/10.24036/jtein.v4i2.398
Menteri Kesehatan Republik Indonesia. (2010). Peraturan Menteri Kesehatan Republik Indonesia Nomor 492/MENKES/PER/IV/2010 tentang Persyaratan Kualitas Air Minum. Kementerian Kesehatan Republik Indonesia.
Onyutha, C., Okello, E., Atukwase, R., Nduhukiire, P., Ecodu, M., & Kwiringira, J. N. (2024). Improving household water treatment: Using zeolite to remove lead, fluoride and arsenic following optimized turbidity reduction in slow sand filtration. Sustainable Environment Research, 34(1), 1–15. https://doi.org/10.1186/s42834-024-00209-x
Presiden Republik Indonesia. (2021). Peraturan Pemerintah Republik Indonesia Nomor 22 Tahun 2021 tentang Penyelenggaraan Perlindungan Pengelolaan Lingkungan Hidup.
Purwanti, E., Ramdani, D., Rahmadewi, R., Nugraha, B., Efelina, V., & Dampang, S. (2021). Sosialisasi manfaat karbon aktif sebagai media filtrasi air guna meningkatkan kesadaran akan pentingnya air bersih di SMK PGRI Cikampek. Selaparang Jurnal Pengabdian Masyarakat Berkemajuan, 4(2), 381–386. https://doi.org/10.31764/jpmb.v4i2.4389
Sasmoko, D., Rasminto, H., & Rahmadani, A. (2019). Rancang bangun sistem monitoring kekeruhan air berbasis IoT pada tandon air warga. Jurnal Informatika Upgris, 5(1), 25–34. https://doi.org/10.26877/jiu.v5i1.2993
Sofarini, D., Yunandar, Y., & Nurhidayah, R. (2022). Perbaikan kualitas air kolam budidaya ikan dengan sistem filtrasi di kecamatan Bakumpai Barito Kuala Kalimantan Selatan. Jurnal Abdi Insani, 9(4), 1486–1494. https://doi.org/10.29303/abdiinsani.v9i4.789
Utari, P., Masrullita, Ibrahim, I., Suryati, & Sulhatun. (2022). Efektifitas pengolahan air sumur menggunakan media zeolit, pasir silika dan karbon aktif pada alat roughing filter aliran horizontal. Chemical Engineering Journal Storage, 2(3), 127–142. https://doi.org/10.29103/cejs.v2i3.6023
Velarde, L., Nabavi, M. S., Escalera, E., Antti, M. L., & Akhtar, F. (2023). Adsorption of heavy metals on natural zeolites: A review. Chemosphere, 328, 138508. https://doi.org/10.1016/j.chemosphere.2023.138508
Xu, Y., Jin, J., Zeng, S., Zhang, Y., & Xiao, Q. (2023). Development and evaluation of an IoT-based portable water quality monitoring system for aquaculture. Inmateh - Agricultural Engineering, 70(2), 359–368. https://doi.org/10.35633/inmateh-70-35
Yuniarti, N., Hariyanto, D., Yatmono, S., & Abdillah, M. (2021). Design and development of IoT based water flow monitoring for Pico hydro power plant. International Journal of Interactive Mobile Technologies, 15(7), 69–80. https://doi.org/10.3991/ijim.v15i07.18425
Zaenurrohman, Susanti, H., Hazrina, F., & Rahmat, S. (2023). Sistem penjernih air otomatis dengan filtrasi berulang dan monitoring kekeruhan berbasis IoT. Infotronik : Jurnal Teknologi Informasi dan Elektronika, 8(1), 1–11. https://doi.org/10.32897/infotronik.2023.8.1.2725
Zahra, A., Mansyur, K., & Putra, A. E. (2023). Pengaruh filter berbeda terhadap parameter kualitas air media pemeliharaan ikan mas (Cyprinus carpio). Jurnal Ilmiah AgriSains, 24(2), 92–102. https://doi.org/10.22487/jiagrisains.v24i2.2023.92-102
DOI: http://dx.doi.org/10.15578/jra.20.1.2025.27-47

Jurnal Riset Akuakultur is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.