POTENSI BIJI DAN DAUN JARAK PAGAR (Jatropha curcas) SEBAGAI SUMBER PROTEIN ALTERNATIF DAN IMUNOSTIMULAN DALAM MENDUKUNG AKUAKULTUR BERKELANJUTAN: KAJIAN PUSTAKA
Abstract
Krisis pangan global dan tingginya kebutuhan protein hewani menuntut adanya sumber protein alternatif yang berkelanjutan dalam akuakultur. Ketergantungan pada tepung ikan sebagai bahan pakan utama menghadapi kendala berupa keterbatasan pasokan dan fluktuasi harga, sehingga diperlukan eksplorasi bahan nabati dengan potensi tinggi, antara lain jarak pagar (Jatropha curcas). Artikel ini bertujuan untuk mengkaji potensi jarak pagar sebagai sumber protein alternatif dalam pakan akuakultur. Metode penelitian yang digunakan dalam kajian ini adalah metode kualitatif dengan teknik pengumpulan data melalui studi literatur atau kajian pustaka. Data diperoleh dengan mempelajari teori, konsep, dan hasil penelitian terdahulu yang relevan dengan topik. Sumber kajian berasal artikel jurnal bereputasi nasional, internasional dan prosiding yang diterbitkan dari tahun 2010-2025. Proses pengumpulan literatur dilakukan melalui berbagai basis data seperti Scopus, Web of Science, PubMed, MDPI, Springer Link dan Google Scholar dengan menggunakan kata kunci yang sesuai.Hasil kajian menunjukkan bahwa jarak pagar mengandung protein tinggi 56–64% dengan profil asam amino lengkap serta senyawa bioaktif (flavonoid 0,09–2,92%, saponin 0,092–3,5%, tanin 0.0049–0,395%, fenolik 0,48-38%, alkaloid 0,070-0,50% terpenoid 0,022%) yang berfungsi sebagai imunostimulan. Proses detoksifikasi mampu menurunkan kandungan antinutrisi hingga 85%. Aplikasinya dalam pakan mampu menggantikan tepung ikan dan kedelai sebesar 10–40%, meningkatkan pertumbuhan, efisiensi pakan, respons imun, dan kelangsungan hidup organisme budidaya hingga 88,3%. Kajian ini menyimpulkan jarak pagar memiliki potensi sebagai sumber protein alternatif dalam pakan akuakultur karena kandungan nutrisinya yang tinggi dan keberadaan senyawa bioaktif yang bermanfaat melalui metode pengolahan yang tepat. Namun, pemanfaatannya masih terbatas oleh kandungan senyawa toksik yang memerlukan proses detoksifikasi efektif dan aman. Tantangan riset ke depan mencakup optimalisasi teknologi detoksifikasi dan analisis kelayakan aplikasinya dalam skala industri.
The global food crisis and the increasing demand for animal protein necessitate sustainable alternative protein sources in aquaculture. Dependence on fishmeal as the primary feed ingredient faces challenges due to limited supply and fluctuating prices, making it essential to explore high-potential plant-based materials such as Jatropha curcas. This article aims to review the potential of Jatropha curcas as a protein source alternative in aquaculture feed. The research employed a qualitative method through a literature review, analyzing theories, concepts, and previous studies relevant to the topic. The data sources were peer-reviewed national and international articles and conference proceedings published between 2010 and 2025. Literature was collected from various databases, including Scopus, Web of Science, PubMed, MDPI, Springer Link, and Google Scholar, using predetermined keywords. The findings indicate that Jatropha curcas contains high protein (56–64%) with a complete amino acid profile and bioactive compounds (flavonoids 0.09–2.92%, saponins 0.092–3.5%, tannins 0.0049–0.395%, phenolics 0.48–38%, alkaloids 0.070–0.50%, terpenoids 0.022%) that function as immunostimulants. Detoxification processes can reduce antinutritional factors by up to 85%. Its application in aquafeed can substitute 10–40% of fishmeal and soybean meal, improving growth, feed efficiency, immune response, and survival rate of cultured organisms up to 88.3%. This review concludes that Jatropha curcas has strong potential as an alternative protein source in aquaculture feed due to its high nutritional content and beneficial bioactive compounds when processed appropriately. However, its utilization remains constrained by toxic compounds that require effective and safe detoxification. Future research challenges include optimizing detoxification technologies and evaluating the plant feasibility for industrial-scale applications.
Keywords
Full Text:
PDFReferences
Abbas, A. H., SE, Atawodi, S. E., Onyike, E. O., & Agbaji, A. S. (2022). Evaluation of Processed Jatropha curcas cake as food supplement on catfish (Clarias gariepinus). Journal of Fisheries Sciences.com., 16(6), 1–7. https://doi.org/10.36648/1387-134
Ahluwalia, S., Bidlan, R., Shrivastav, A. K., Goswami, R. K., Singh, P., & Sharma, J. G. (2020). Optimization of protein extraction from detoxified Jatropha seed cake using response surface methodology and amino acid analysis. International Journal of Environmental Science and Technology, 17(2), 1087–1100. https://doi.org/10.1007/s13762-019-02340-4
Abou-Arab, A. A., Mahmoud, M. H., Ahmed, D. M. M., & Abu-Salem, F. M. (2019). Comparative study between chemical, physical and enzymatic methods for Jatropha curcas kernel meal phorbol ester detoxification. Heliyon, 5(5), 1-6. https://doi.org/10.1016/j.heliyon.2019.e01689
Abubakar, M. (2020). Toasted Jatropha curcas seed meal in Nile tilapia (Oreochromis niloticus) diet: Effect on growth, economic performance, haematology, serum biochemistry and liver histology. International Journal of Aquatic Biology, 8(2), 98-108. https://doi.org/10.22034/ijab.v8i2.808
Adeyemo, G., & Oluyede, F. (2015). Dietary inclusion of ethanolic extracts of Jatropha curcas on the performance and carcass characteristics of Broiler Chickens. American Journal of Experimental Agriculture, 8(2), 130–136. https://doi.org/10.9734/ajea/2015/10580
Ahmed, A. M., Ibrahim, M. M., El-said, M. A. A. E., & Elsadek, B. (2020). Anti-cancer activity of curcin and latex isolated from jatropha plant (Jatropha Curcas L.). Journal of Agricultural Chemistry and Biotechnology, 11(11), 339–344. https://doi.org/10.21608/jacb.2020.128902
Ardiyanti, Y., & Marfu’ah, S. (2025). Pemanfaatan ekstrak daun jarak merah (Jatropa gossypiifolia) sebagai antioksidan dan toksisitasnya terhadap larva Artemia salina. Jurnal Sains Dan Kesehatan, 7(2), 2407–6082. https://doi.org/10.25026/jsk.v7i2.2273
Arifin, N. B., Marthapratama, I., Sanoesi, E., & Prajitno, A. (2017). Aktivitas antibakteri ekstrak daun jarak pagar (Jatropha curcas Linn) pada Vibrio Harveyi dan Aeromonas hydrophila. Jurnal Perikanan Universitas Gadjah Mada, 19(1), 11-16.
Asuk, A. A., Agiang, M. A., Dasofunjo, K., & Willie, A. J. (2015). The biomedical significance of the phytochemical, proximate and mineral compositions of the leaf, stem bark and root of Jatropha curcas. Asian Pacific Journal of Tropical Biomedicine, 5(8), 650–657. https://doi.org/10.1016/j.apjtb.2015.05.015
Akter, S., Haque, M. A., Sarker, M. A.-A., Atique, U., Iqbal, S., Sarker, P. K., Paray, B. A., Arai, T., & Hossain, M. B. (2024). Efficacy of using plant ingredients as partial substitute of fishmeal in formulated diet for a commercially cultured fish, Labeo rohita. Frontiers in Sustainable Food Systems, 8, 1376112. https://doi.org/10.3389/fsufs.2024.1376112
Badan Litbang Pertanian. 2007. Prospek dan Arah Pengembangan Agribisnis. Aspek Kesesuaian Lahan. Badan Penelitian dan Pengembangan Pertanian, Jakarta, 30 hlm.
Barbosa, D. A. P., Kosten, S., Muniz, C. C., & Oliveira-Junior, E. S. (2024). From feed to fish-nutrients’ fate in aquaculture systems. In Applied Sciences (Switzerland), 14(14), 1-22. https://doi.org/10.3390/app14146056
Barros, C. R., Ferreira, L. M. M., Fraga, I., Mourão, J. L., & Rodrigues, M. A. M. (2024). Detoxification methods of Jatropha curcas seed cake and its potential utilization as animal feed. Fermentation, 10(5), 1-17. https://doi.org/10.3390/fermentation10050256.
Boyd, C. E., McNevin, A. A., & Davis, R. P. (2022). The contribution of fisheries and aquaculture to the global protein supply. Food Security, 14(3), 805–827. https://doi.org/10.1007/s12571-021-01246-9
Cao, X., Wei, X., Shao, Y., Li, D., & Zhu, J. (2025). Jatropha curcas seed oil for possible human consumption: A toxicological assessment of its phorbol esters. Toxicology Reports, 14(2025), 101870. https://doi.org/10.1016/j.toxrep.2024.101870.
Chaikul, P., Lourith, N., & Kanlayavattanakul, M. (2024). Decelerated skin aging effect of rubber (Hevea brasiliensis) seed oil in cell culture assays. Scientific Reports, 14(1), 1-13. https://doi.org/10.1038/s41598-024-81035-4
Chen, F., Ding, Z., Su, Z., Guan, J., Xu, C., Wang, S., Li, Y., & Xie, D. (2024). Efficiently substituting dietary fish meal with terrestrial compound protein enhances growth, health, and protein synthesis in largemouth bass. Animals, 14(15), 2196. https://doi.org/10.3390/ani14152196
Cheng, T., Huang, H., Mi, H., Zhang, L., Deng, J., Zhang, S., Dong, X., Chi, S., Yang, Q., Liu, H., Xie, S., Zhang, W., & Tan, B. (2024). Effects of replacing fish meal with rubber seed cake on growth, digestive, antioxidant and protein metabolism of juvenile asian red-tailed catfish (Hemibagrus wyckioides). Animals, 14(21), 1-14. https://doi.org/10.3390/ani14213149
Ciptaan, G., Mirnawati, M., Aini, Q., & Makmur, M. (2022). Nutrient content and quality of soybean meal waste fermented by Aspergillus ficuum and Neurospora crassa. Online Journal of Animal and Feed Research, 12(4), 240–245. https://doi.org/10.51227/ojafr.2022.32
Cruz, A. C. P., Ordoñez-Rosas, M. L., Garcia-Ortega, A., Angulo-Escalante, M. A., Almazan-Rueda, P., & Doninguez-Jimenez, V. P. (2018). Biochemical composition and evaluation of Jatropha curcas meal as a replacement for fish meal in diets of juvenile nile tilapia (Oreochromis niloticus). Tropical and Subtropical Agroecosystems, 21(2), 273-282. https://doi.org/10.56369/tsaes.2427
Da Cunha, L., Besen, K. P., de Oliveira, N. S., Delziovo, F. R., Gomes, R., da Cruz, J. M., Picoli, F., Gisbert, E., Skoronski, E., & El Hadi Perez Fabregat, T. (2022). Fermented soybean meal can partially replace fishmeal and improve the intestinal condition of goldfish juveniles reared in a biofloc system. Aquaculture Research, 53(18), 6803-6815. https://doi.org/10.1111/are.16147
Dai, X., Yang, X., Wang, C., Fan, Y., Xin, S., Hua, Y., Wang, K., & Huang, H. (2021). CRISPR/Cas9-mediated genome editing in Hevea brasiliensis. Industrial Crops and Products, 164, 113418. https://doi.org/10.1016/j.indcrop.2021.113418.
De-Castro, R. M. (2010). Evaluation of phorbol ester toxicity of jatropha curcas using tilapia ( Oreochromis niloticus L . ) bioassay college of engineering and agro-industrial technology. Los Banos. University of The Philippines Los Banos.
Direktorat Jenderal Perkebunan, Kementerian Pertanian Republik Indonesia. (2023). Statistik Perkebunan Non Unggulan Nasional Tahun 2020-2022. https://ditjenbun.pertanian.go.id/template/uploads/2022/11/BUKU-STATISIK-NON-UNGGULAN-2020-2022
Efendy, E. N., Syawallita, R. O., Zainuri, M., & Junaedi, A. S. (2023). Aplikasi pemberian probiotik yang berbeda ikan Lele Sangkuriang (Clarias gariepinus) Di Desa Banyuajuh Kamal Bangkalan. Journal of Indonesian Tropical Fisheries (JOINT-FISH): Jurnal Akuakultur, Teknologi Dan Manajemen Perikanan Tangkap Dan Ilmu Kelautan, 6(2), 224–235. https://doi.org/10.33096/joint-fish.v6i2.387
Elangovan, A. V, Gowda, N. K. S., Satyanarayana, M. L., Suganthi, R. U., Rao, S. B. N., & Sridhar, M. (2013). Jatropha (Jatropha curcas) seed cake as a feed ingredient in the rations of sheep. Animal Nutrition and Feed Technology, 13(1), 57–67.
Fajingbesi, O. A., M Z, W. C., B, A. J., A, A. A., Balogun, O., Daniel Oche, O., Yusuf, I., & Ibrahim, B. (2019). Detoxification and anti-nutrient reduction of J.curcas seed cake by fermentation using bacillus coagulans. World Journal of Pharmaceutical and Medical Research, 5(1), 1-8. https://kubanni.abu.edu.ng/handle/123456789/10800.
Fantatto, R. R., Mota, J., Ligeiro, C., Vieira, I., Guilgur, L. G., Santos, M., & Murta, D. (2024). Exploring sustainable alternatives in aquaculture feeding: the role of insects. Aquaculture Reports, 37, 102228. https://doi.org/10.1016/j.aqrep.2024.102228.
Fatril, D. D., Putri, D. A., & Putri, R. E. (2025). Uji toksisitas ekstrak etanol daun jarak pagar (Jatropha curcas L.) dengan metode Brine Shrimp Lethality Test (BSLT). BioWallacea: Jurnal Penelitian Biologi (Journal of Biological Research), 12(1), 49-54.
Fauziantaka, D. B., Pratiwy, F. M., Handaka, A. A., & Zidni, I. (2025). the effect of probiotics addition in feed on the survival and growth of nile fish (Oreochromis niloticus) in the aquaponic system. Jurnal Perikanan Unram, 15(3), 1058-1068. https://doi.org/10.29303/jp.v15i3.1391.
Fawole, F. J., Sahu, N. P., Shamna, N., Phulia, V., Emikpe, B. O., Adeoye, A. A., Aderolu, A. Z., & Popoola, O. M. (2018). Effects of detoxified Jatropha curcas protein isolate on growth performance, nutrient digestibility and physio-metabolic response of Labeo rohita fingerlings. Aquaculture Nutrition, 24(4), 1223-1233. https://doi.org/10.1111/anu.12660
Fawole, F. J., Sahu, N. P., Shamna, N., Adeoye, A. A., Phulia, V., & Emikpe, B. O. (2023). Effects of dietary detoxified Jatropha curcas protein isolate on some physiological parameters, intestine, and liver morphology of Labeo rohita fingerlings. Turkish Journal of Fisheries and Aquatic Sciences, 23(1), 1-10. https://doi.org/10.4194/TRJFAS21623
Feng, X., Ng, K., Ajlouni, S., Zhang, P., & Fang, Z. (2024). Effect of solid-state fermentation on plant-sourced proteins: A review. Food Reviews International, 40(9), 2580-2617. https://doi.org/10.1080/87559129.2023.2274490
Flora, M. A. L. Della, da Silva Cardoso, A. J., & Hisano, H. (2023). Growth, metabolism and digestibility of Nile tilapia fed diets with solvent and extrusion-treated Jatropha curcas cake. Veterinary Research Communications, 47(3), 1273-1283. https://doi.org/10.1007/s11259-023-10076-3
Gangwar, M., & Shankar, J. (2020). Molecular mechanisms of the floral biology of Jatropha curcas: opportunities and challenges as an energy crop. Frontiers in Plant Science, 11, 609. https://doi.org/10.3389/fpls.2020.00609
Ghosh, S., & Bitra, V. S. P. (2020). Phorbol ester degradation using chemical treatment in Jatropha kernel meal. IJCS, 8(3), 159-163. https://doi.org/10.22271/chemi.2020.v8.i3b.9219.
Ghosh, S., Bitra, V. S. P., S Dasi, D., & Godugula, V. (2021). Detoxification of jatropha kernel meal to utilize it as aqua-feed. Journal of the Science of Food and Agriculture, 101(12), 5089-5096. https://doi.org/10.1002/jsfa.11154
Gomes, T. G., Hadi, S. I. I. A., de Aquino Ribeiro, J. A., Segatto, R., Mendes, T. D., Helm, C. V., Júnior, A. F. C., Miller, R. N. G., Mendonça, S., & de Siqueira, F. G. (2022). Phorbol ester biodegradation in Jatropha curcas cake and potential as a substrate for enzyme and Pleurotus pulmonarius edible mushroom production. Biocatalysis and Agricultural Biotechnology, 45, 102498. https://doi.org/10.1016/j.bcab.2022.102498.
Guangwei, W., Luo, W., Zhang, X., Sun, G., Tong, F., & Luo, W. (2025). Effect of different fishmeal levels in diets on growth performance, tissue morphology, intestinal microflora, and muscle volatile compounds of grass carp. Frontiers in Marine Science, 12, 1659376. https://doi.org/10.3389/fmars.2025.1659376
Guedes, R. E., de Almeida Cruz, F., de Lima, M. C., Sant’Ana, L. D., Castro, R. N., & Mendes, M. F. (2014). Detoxification of Jatropha curcas seed cake using chemical treatment: analysis with a central composite rotatable design. Industrial Crops and Products, 52, 537-543. https://doi.org/10.1016/j.indcrop.2013.11.024.
Gunun, N., Kaewpila, C., Khota, W., Kimprasit, T., Cherdthong, A., & Gunun, P. (2024). The effect of supplementation with rubber seed kernel pellet on in vitro rumen fermentation characteristics and fatty acid profiles in Swamp Buffalo. BMC Veterinary Research, 20(1), 1-8. https://doi.org/10.1186/s12917-024-04017-8
Handajani, H., Hakim, R. R., Sutaro, G. A., Mavuso, B. R., Chang, Z., & Andriawan, S. (2021). Degradation of phorbol esters on the Jatropha curcas Linn. seed by biological detoxification. E3S Web of Conferences, 226, 00020. https://doi.org/10.1051/e3sconf/202122600020.
Harinder, P. M., Francis, G., & Becker, K. (2008). Protein concentrate from Jatropha curcas screw-pressed seed cake and toxic and antinutritional factors in protein concentrate. Journal of the Science of Food and Agriculture, 88, 1542-1548. https://doi.org/10.1002/jsfa.
Harter, T., Buhrke, F., Kumar, V., Focken, U., Makkar, H. P. S., & Becker, K. (2011). Substitution of fish meal by Jatropha curcas kernel meal: Effects on growth performance and body composition of white leg shrimp (Litopenaeus vannamei). Aquaculture Nutrition, 17(5), 542-548. https://doi.org/10.1111/j.1365-2095.2010.00845.x.
Herdina, A. P., Handayani, E., Rohmawati, S., Isfanaya, N. K., & Sopandi, T. (2024). Evaluation of the nutritional composition of fish meal production. International Journal of Agriculture & Environmental Science, 11(4), 42-46. https://doi.org/10.14445/23942568/ijaes-v11i4p106
Herman, M., & Anam, C. (2009). Pola tanam berbasis jarak pagar. Jurnal Saintis, 1(1), 43-54. https://doi.org/https://dx.doi.org/10.7831/ras.8.0_109
Hermantara, R. (2024). CRISPR-Cas9: A story of discovery, innovation, and revolution in genome editing. Indonesian Journal of Life Sciences, 83-104. https://doi.org/10.54250/ijls.v6i01.197
Herrera, J., Siddhuraju, P., Francis, G., Dávila-Ortíz, G., & Becker, K. (2006). Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico. Food Chemistry, 96(1), 80-89. https://doi.org/10.1016/j.foodchem.2005.01.059
Hilmarsdóttir, G. S., Ögmundarson, Ó., Arason, S., & Gudjónsdóttir, M. (2022). Identification of environmental hotspots in fishmeal and fish oil production towards the optimization of energy-related processes. Journal of Cleaner Production, 343, 130880. https://doi.org/10.1016/j.jclepro.2022.130880
Hossain, M. B., Sultana, J., Pingki, F. H., Nur, A.-A. U., Mia, M. S., Bakar, M. A., Yu, J., Paray, B. A., & Arai, T. (2023). Accumulation and contamination assessment of heavy metals in sediments of commercial aquaculture farms from a coastal area along the northern Bay of Bengal. Frontiers in Environmental Science, 11, 1148360. https://doi.org/10.3389/fenvs.2023.1148360
Jimoh, W. A., Ayeloja, A. A., Abubakar, M. I. O., Yusuf, Y. O., Shittu, M. O., & Abdulsalami, S. A. (2020). Toasted Jatropha curcas seed meal in nile tilapia (Oreochromis niloticus) diet: effect on growth, economic performance, haematology, serum biochemistry and liver histology. International Journal of Aquatic Biology, 8(2), 98-108. https://doi.org/10.22034/ijab.v8i2.808
Jimoh, W. A., Shittu, M. O., Ayeloja, A. A., Abdulsalami, S. A., & Okemakin, F. Y. (2020). Apparent digestibility coefficients of nutrients in diets containing Jatropha curcas seedmeal by Oreochromis niloticus. Journal of Agricultural Sciences - Sri Lanka, 15(3), 378-386. https://doi.org/10.4038/jas.v15i3.9029
Jimoh, J. O., Rahmah, S., Omitoyin, B. O., Ajani, E. K., Jalilah, M., Okomoda, V. T., Torsabo, D., Fabusoro, A. A., Chang, Y. M., & Chen, Y.-M. (2024). Growth performances of Clarias gariepinus juveniles fed with Jatropha curcas seed meal. Aquaculture Reports, 39, 102433. https://doi.org/10.1016/j.aqrep.2024.102433
Jimoh, W. A., Ayeloja, A. A., Abubakar, M. I. O., Yusuf, Y. O., Shittu, M. O., & Abdulsalami, S. A. (2020). Toasted Jatropha curcas seed meal in nile tilapia (Oreochromis niloticus) diet: Effect on growth, economic performance, haematology, serum biochemistry and liver histology. International Journal of Aquatic Biology, 8(2), 98-108. https://doi.org/10.22034/ijab.v8i2.808
Karolina, W.-A., & Justyna, N. (2025). Rapeseed meal as an alternative protein source in fish feed and its impact on growth parameters, digestive tract, and gut microbiota. Animals, 15(9), 1264. https://doi.org/10.3390/ani15091264
Kamaruddin, A., Wan Harun, W. H. A., Mohd Bakri, M., Zainal Abidin, S. A., Giribabu, N., & Syed Abdul Rahman, S. N. (2024). Phytochemical profile and antimicrobial activity of Jatropha curcas extracts against oral microorganisms. Heliyon, 10(17), 1-14. https://doi.org/10.1016/j.heliyon.2024.e33422.
Kaur, N., Qadir, M., Francis, D. V, Alok, A., Tiwari, S., & Ahmed, Z. F. R. (2025). CRISPR/Cas9: a sustainable technology to enhance climate resilience in major Staple Crops. Frontiers in Genome Editing, 7(3), 1-27. https://doi.org/10.3389/fgeed.2025.1533197
Krome, C., Jauncey, K., & Focken, U. (2016). Jatropha curcas kernel meal as a replacement for fishmeal in practical Nile tilapia, Oreochromis niloticus feeds. AACL Bioflux, 9(3), 590-596. https://dspace.stir.ac.uk/bitstream/1893/24177/1/2016.590-596
Kumar, V., & Barman, D. (2012). Anti-nutritional Factors in Plant Feedstuffs Used in Aquafeeds. World Aquaculture, 43(4), 64-67.
Kumar, V., Makkar, H. P. S., & Becker, K. (2010). Dietary inclusion of detoxified Jatropha curcas kernel meal : effects on growth performance and metabolic efficiency in common carp, Cyprinus carpio L. Fish Physiol Biochem, 36(4), 1159-1170. https://doi.org/10.1007/s10695-010-9394-7
Levi, Y. F. C. P., Dwisari, M., Tanuwiria, H., Budiman, A., & Hernaman, I. (2022). Dampak penggunaan bungkil biji jarak (Jatropha curcas L.) dalam ransum sapi potong terhadap fermentabilitas dan kecernaan secara in vitro. COMPOSITE: Jurnal Ilmu Pertanian, 4(2), 41-46. https://doi.org/10.37577/composite.v4i2.445
Li, B., Boukhennou, A., Shao, J., Miao, L., Du, Y., & Chen, J. (2025). Application status and development prospect of fermented ingredients in aquaculture. Aquaculture Reports, 42, 102842. https://doi.org/10.1016/j.aqrep.2025.102842
Li, Y., Chen, L., Zhang, Y., Wu, J., Lin, Y., Fang, Z., Che, L., Xu, S., & Wu, D. (2017). Substitution of soybean meal with detoxified Jatropha curcas kernel meal: Effects on performance, nutrient utilization, and meat edibility of growing pigs. Asian-Australasian Journal of Animal Sciences, 31(6), 888-898. https://doi.org/10.5713/ajas.17.0499.
Liang, H., Ma, Z., Sun, R., & Song, L. (2021). Research progress on antibacterial activity of bioactive flavonoids. China Surfactant Detergent and Cosmetics, 51(8), 775-781. https://doi.org/10.3969/j.issn.1001-1803.2021.08.012
Liu, G., & Mai, J. (2022). Habitat shifts of Jatropha curcas L. in the Asia-Pacific region under climate change scenarios. Energy, 251, 123885. https://doi.org/10.1016/j.energy.2022.123885
Liu, Q., Yang, F., Zhang, J., Liu, H., Rahman, S., Islam, S., Ma, W., & She, M. (2021). Application of CRISPR/Cas9 in crop quality improvement. International Journal of Molecular Sciences, 22(8), 1-16. https://doi.org/10.3390/ijms22084206
Liu, Y., Zhu, Z., Zhang, R., & Zhao, X. (2024). Life cycle assessment and life cycle cost analysis of Jatropha biodiesel production in China. Biomass Conversion and Biorefinery, 14(22), 28635–28660. https://doi.org/10.1007/s13399-022-03614-7
Luthada-Raswiswi, R., Mukaratirwa, S., & O’brien, G. (2021). Animal protein sources as a substitute for fishmeal in aquaculture diets: a systematic review and meta-analysis. Applied Sciences, 11(9), 1-16. https://doi.org/10.3390/app11093854
Ma, Z., Hassan, M. M., Allais, L., He, T., Leterme, S., Ellis, A. V, McGraw, B., & Qin, J. G. (2018). Replacement of fishmeal with commercial soybean meal and EnzoMeal in juvenile barramundi Lates calcarifer. Aquaculture Research, 49(10), 3258-3269. https://doi.org/10.1111/are.13790
Macusi, E. D., Cayacay, M. A., Borazon, E. Q., Sales, A. C., Habib, A., Fadli, N., & Santos, M. D. (2023). Protein fishmeal replacement in aquaculture: A systematic review and implications on growth and adoption viability. Sustainability, 15(16), 1-15. https://doi.org/10.3390/su151612500
Mahyuddin, Husain, S., & Mustarin, A. (2020). Pengaruh perendaman telur ikan mas (Cyprinus carpio L.) dalam larutan daun jarak pagar (Jatropha curcas L.) terhadap daya tetas telur. Jurnal Pendidikan Teknologi Pertanian, 6(1), 23-32. https://doi.org/10.26858/jptp.v6i1.11182
Mao, Z., Chen, Y., Cao, S., Tang, J., Qu, F., Tao, M., & Liu, Z. (2024). Effects of the total fish meal replacement by plant meal on growth performance, nutrient utilization and intestinal microbiota of backcross F2 derived from blunt snout bream (Megalobrama amblycephala,♀)× topmouth culter (Culter alburnus,♂). Aquaculture Reports, 34, 101889. https://doi.org/10.1016/j.aqrep.2023.101889
Marzouk, O. A. (2020). Jatropha curcas as marginal land development crop in the sultanate of oman for producing biodiesel, biogas, biobriquettes, animal feed, and organic fertilizer. Reviews in Agricultural Science, 8, 109-123. https://doi.org/10.7831/ras.8.0_109
Maulu, S., Langi, S., Hasimuna, O. J., Missinhoun, D., Munganga, B. P., Hampuwo, B. M., Gabriel, N. N., Elsabagh, M., Van Doan, H., & Kari, Z. A. (2022). Recent advances in the utilization of insects as an ingredient in aquafeeds: A review. Animal Nutrition, 11, 334-349. https://doi.org/10.1016/j.aninu.2022.07.013
Maundu, A., Munguti, J., Sharma, R., Kasozi, N., Liti, D., Muthoka, M., Kirimi, J., & Mutiso, J. (2024). Apparent protein digestibility and growth performance of Nile Tilapia (Oreochromis niloticus L.) fed on sunflower and cotton seed meal as substitutes for freshwater shrimp meal (Caridina nilotica). Aquaculture Research, 2024(1), 2713506. https://doi.org/10.1155/2024/2713506
Masri, R. S., Syafni, N., Rustini, R., Supriyono, A., Kuo, P.-C., & Handayani, D. (2025). Isolation of endophytic fungi with antibacterial activity from medicinal plant Jatropha multifida L. Journal of Applied Pharmaceutical Science, 15(7), 261-271. https://doi.org/10.7324/JAPS.2025.230085
Mello, F. V., Silva, P., Barata, M., Soares, F., Pousão-Ferreira, P., Duarte, M. P., Valente, L. M. P., Marques, A., & Anacleto, P. (2025). Protein digestibility of aquafeeds in Sparus aurata: A model for in vitro bioaccessibility validation in fish. Food Research International, 213(2025), 116554. https://doi.org/10.1016/j.foodres.2025.116554
Michael, K. G., Sogbesan, O. A., Onyia, L. U., & Shallangwa, S. M. (2019). Nutritional evaluation of processed Jatropha curcas seed meals. Direct Research Journal, 7(6), 131-136. https://doi.org/10.1016/j.aqrep.2018.04.001
Montoya-Mejía, M., García-Ulloa, M., Hernández-Llamas, A., Nolasco-Soria, H., & Rodríguez-González, H. (2017). Digestibility, growth, blood chemistry, and enzyme activity of juvenile Oreochromis niloticus fed isocaloric diets containing animal and plant byproducts. Revista Brasileira de Zootecnia, 46(12), 873-882. https://doi.org/10.1590/S1806-92902017001200001
Muhammad, O. A., Omolade, A. O., & Daniyan, S. Y. (2017). Growth performance and body compositions of Clarias gariepinus fed graded levels of detoxified Jatropha curcas meal. Oceanography & Fisheries, 3(5), 1-5. https://doi.org/10.19080/OFOAJ.2017.03.555621
Musa, S. O., Okomoda, V. T., Tiamiyu, L. O., Solomon, S. G., Adeyemo, B. T., Alamanjo, C. C., & Abol-Munafi, A. B. (2021). Dietary implications of toasted Jatropha curcas kernel on the growth, haematology, and organ histology of Clarias gariepinus fingerlings. Tropical Animal Health and Production, 53(2), 232-243. https://doi.org/10.1007/s11250-021-02678-3
Musa, S. O., Tiamiyu, L. O., Solomon, S. G., Ayuba, V. O., & Okomoda, V. T. (2018). Nutritional value of hydrothermally processed Jatropha curcas kernel and its effect on growth and hematological parameters of Clarias gariepinus fingerlings (Burchell, 1822). Aquaculture Reports, 10, 32-38. https://doi.org/10.1016/j.aqrep.2018.04.001
Nafees, M. S. M., Kamarudin, M. S., Karim, M., Hassan, M. Z., & de Cruz, C. R. (2023). Effects of dietary fiber on growth, feed efficiency and nutrient utilization of tinfoil barb (Barbonymus schwanenfeldii, Bleeker 1853) fry. Aquaculture Reports, 32, 101743. https://doi.org/10.1016/j.aqrep.2023.101743
Najda, A. B., Almehemdi, A. F., & Zabar, A.F .(2013). Chemical composition and nutritional value of jatropha Jatropha curcas L. leaves. Journal of Genetic and Environmental Resources Conservation. 1(3), 221–226. https://doi.org/10.63799
Najjar, A., Abdullah, N., Saad, W. Z., Ahmad, S., Oskoueian, E., Abas, F., & Gherbawy, Y. (2014). Detoxification of toxic phorbol esters from Malaysian Jatropha curcas Linn. kernel by Trichoderma spp. and endophytic fungi. International Journal of Molecular Sciences, 15(2), 2274-2288. https://doi.org/10.3390/ijms15022274
Napier, J. A., & Betancor, M. B. (2023). Engineering plant-based feedstocks for sustainable aquaculture. Current Opinion in Plant Biology, 71. 102323. https://doi.org/10.1016/j.pbi.2022.102323
Nepal, S., Kumar, V., Makkar, H. P. S., Stadtlander, T., Romano, N., & Becker, K. (2018). Comparative nutritional value of Jatropha curcas protein isolate and soy protein isolate in common carp. Fish Physiology and Biochemistry, 44(1), 143-162. https://doi.org/10.1007/s10695-017-0420-x
Neu, P. M., Schober, S., & Mittelbach, M. (2018). Quantification of phorbol esters in Jatropha curcas by HPLC‐UV and HPLC‐ToF‐MS with standard addition method. European Journal of Lipid Science and Technology, 120(8), 1800146. https://doi.org/10.1002/ejlt.201800146
Neupane, D., Bhattarai, D., Ahmed, Z., Das, B., Pandey, S., Solomon, J. K. Q., Qin, R., & Adhikari, P. (2021). Growing Jatropha (Jatropha curcas l.) as a potential second‐generation biodiesel feedstock. Inventions, 6(4), 1-23. https://doi.org/10.3390/inventions6040060
Nithiyanantham, S., Siddhuraju, P., & Francis, G. (2012). Potential of Jatropha curcas as a biofuel, animal feed and health products. Journal of the American Oil Chemists’ Society, 89(6), 961-972. https://doi.org/10.1007/s11746-012-2012-3
Nna, P. J., Joseph, L., & Orie, K. J. (2020). Comparative study on the phytoconstituents and antimicrobial analysis of Jatropha curcas leaf and stem bark. Direct Research Journal of Chemistry and Material Science, 7(12), 37-43. https://doi.org/10.26765/DRJCMS7219803564
Nunes, A. J. P., & Masagounder, K. (2022). Optimal levels of fish meal and methionine in diets for juvenile Litopenaeus vannamei to support maximum growth performance with economic efficiency. Animals, 13(1), 1-18. https://doi.org/10.3390/ani13010020
Nurhidayanti. (2020). Acute toxicity test of Jatropha curcas l. On nile tilapia seeds (Oreochromis niloticus L.). Science and Technology Indonesia, 5(1), 18-22. https://doi.org/10.26554/sti.2020.5.1.18-22
Nurhidayanti, N. (2020). Acute Toxicity Test of Jatropha curcas L. on Nile Tilapia Seeds (Oreochromis niloticus L.). Science and Technology Indonesia, 5(1), 18-22.
Okomoda, V. T., Musa, S. O., Tiamiyu, L. O., Solomon, S. G., Alamanjo, C. C., & Abol-Munafi, A. B. (2021). Dietary implications of detoxified Jatropha curcas kernel for Clarias gariepinus fingerlings. Veterinary Sciences, 8(8), 152-163. https://doi.org/10.3390/vetsci8080152
Okomoda, V. T., Musa, S. O., Tiamiyu, L. O., Solomon, S. G., Oladimeji, A. S., Hassan, A., Alabi, K. I., & Abol-Munafi, A. B. (2020). Fermentation of hydrothermal processed Jatropha curcas kernel: Effects on the performance of Clarias gariepinus (Burchell, 1822) fingerlings. Aquaculture Reports, 18(5), 100428. https://doi.org/10.1016/j.aqrep.2020.100428
Omoikhoje, S. O., Eguaoje, A. S., Iyiorobhe, P., Akangbe, E., & Aidelomon, E. O. (2024). Growth performance of broiler chickens on cold aqueous Jatropha tanjorensis leaf extracts. Nigerian Journal of Animal Production, 49(1), 1298-1302. https://doi.org/10.51791/njap.vi.7003
Oskoueian, E., Oskoueian, A., & Shakeri, M. (2021). Benefits and challenges of Jatropha meal as novel biofeed for animal production. Veterinary sciences, 8(9), 1-14. https://doi.org/10.3390/vetsci8090179
Oviedo-Rondon, E. O., Toscan, A., Fagundes, N. S., Vidal, J. K., Barbi, J., & Thiery, P. (2024). Soybean meal nutrient composition, amino acid digestibility, and energy content according to the country of origin and year of harvest evaluated via NIRS. Journal of Applied Poultry Research, 33(3), 100448. https://doi.org/10.1016/j.japr.2024.100448
Oyetayo, V. O., & Temenu, O. E. (2023). Comparative Study on the phytochemical, antistaphylococcal and antioxidant properties of the stem bark of Jatropha curcas L and Jatropha gossypifolia L. Sultan Qaboos University Journal for Science, 28(1), 17-24. https://doi.org/10.53539/squjs.vol28iss1pp17-24.
Pamba, M. R., Poirier, V., Nguema Ndoutoumou, P., & Epule, T. E. (2024). Growing Jatropha curcas L. improves the chemical characteristics of degraded tropical soils. Forests, 15(10), 1-12. https://doi.org/10.3390/f15101709
Phasukarratchai, N., Tontayakom, V., & Tongcumpou, C. (2012). Reduction of phorbol esters in Jatropha curcas L. pressed meal by surfactant solutions extraction. Biomass and Bioenergy, 45, 48-56. https://doi.org/10.1016/j.biombioe.2012.05.020
Phengnuam, T., & Suntornsuk, W. (2013). Detoxification and anti-nutrients reduction of Jatropha curcas seed cake by Bacillus fermentation. Journal of Bioscience and Bioengineering, 115(2), 168-172. https://doi.org/10.1016/j.jbiosc.2012.08.017
Phulia, V., Sardar, P., Sahu, N. P., Shamna, N., Fawole, F. J., Gupta, S., & Gadhave, P. D. (2017). Replacement of soybean meal with fermented Jatropha curcas Kernel meal in the diet of Labeo rohita Fingerlings: Effect on hemato-biochemical and histopathological parameters. Journal of the World Aquaculture Society, 48(4), 676-683. https://doi.org/10.1111/jwas.12379
Qin, X., Sun, G., Meng, Y., Su, X., Zhang, L., Tian, H., Li, C., & Ma, R. (2025). Combined replacement of fish meal and fish oil by composite proteins source and canola oil: Effects on the growth performance, liver and intestine health of triploid rainbow trout. Aquaculture Reports, 43, 103005. https://doi.org/10.1016/j.aqrep.2025.103005
Rahu, M. I., Naqvi, S. H. A., Memon, N. H., Idrees, M., Kandhro, F., Pathan, N. L., Sarker, M. N. I., & Aqeel Bhutto, M. (2021). Determination of antimicrobial and phytochemical compounds of Jatropha curcas plant. Saudi Journal of Biological Sciences, 28(5), 2867-2876. https://doi.org/10.1016/j.sjbs.2021.02.019
Rai, S., Kafle, A., Devkota, H. P., & Bhattarai, A. (2023). Characterization of saponins from the leaves and stem bark of Jatropha curcas L. for surface-active properties. Heliyon, 9(5), e15807. https://doi.org/10.1016/j.heliyon.2023.e15807
Rodríguez-González, H., López-Aguilar, M. R., Fonseca-Madrigal, J., Martínez-Palacios, C. A., & García-Ulloa, M. (2018). Use of a mixture of vegetal (Jatropha curcas) and animal (fish silage) byproducts as protein source in shrimp (Litopenaeus vannamei) diets. Revista Brasileira de Zootecnia, 47(11), 1-8. https://doi.org/10.1590/rbz4720170165
Rossignoli, C. M., Manyise, T., Shikuku, K. M., Nasr-Allah, A. M., Dompreh, E. B., Henriksson, P. J. G., Lam, R. D., Lozano Lazo, D., Tran, N., Roem, A., Badr, A., Sbaay, A. S., Moruzzo, R., Tilley, A., Charo-Karisa, H., & Gasparatos, A. (2023). Tilapia aquaculture systems in Egypt: Characteristics, sustainability outcomes and entry points for sustainable aquatic food systems. Aquaculture, 577, 739952 https://doi.org/10.1016/j.aquaculture.2023.739952
Ruatpuia, J. V. L., Halder, G., Vanlalchhandama, M., Lalsangpuii, F., Boddula, R., Al-Qahtani, N., Niju, S., Mathimani, T., & Rokhum, S. L. (2024). Jatropha curcas oil a potential feedstock for biodiesel production: A critical review. Fuel, 370, 131829. https://doi.org/10.1016/j.fuel.2024.131829
Rusda, Y., Prayitno, S. B., & Hastuti, S. (2023). Effect of soaking Java barb (Baryoniums gonionotus) eggs in Jatropha leaf solution (Jatropha curcas L.) on their hatching and survival rate. Omni-Akuatika, 2(19), 115-125. https://doi.org/10.20884/1.oa.2023.19.2.1067
Saeed, M., Arain, M. A., Arif, M., Lagawany, M., Abd El-Hack, M. E., Kakar, M. U., Manzoor, R., Erdenee, S., & Chao, S. (2017). Jatropha (Jatropha curcas) meal is an alternative protein source in poultry nutrition. World’s Poultry Science Journal, 73(4), 783-790. https://doi.org/10.1017/S0043933917000824
Saetae, D., Kleekayai, T., Jayasena, V., & Suntornsuk, W. (2011). Functional properties of protein isolate obtained from physic nut (Jatropha curcas L.) seed cake. Food Science and Biotechnology, 20(1), 29-37. https://doi.org/10.1007/s10068-011-0005-x
Serra, V., Pastorelli, G., Tedesco, D. E. A., Turin, L., & Guerrini, A. (2024). Alternative protein sources in aquafeed: Current scenario and future perspectives. Veterinary and Animal Science, 25, 100381. https://doi.org/10.1016/j.vas.2024.100381
Setiawan, A., Wahyuni, T., Asianto, A. D., Malika, R., Wulansari, R. E., Retno, R. A., Listyowati, T., Rakhman, F. A., Indria, P. D., Tambunan, M. L. M., Arifah, F. A., Putra, H. I. K., & Narentar, J. E. S. (2024). Analisis Indikator Kinerja Utama (IKU) Sektor Kelautan dan Perikanan Kurun Waktu 2019-2023. Pusat Data, Statistik dan Informasi. Jakarta.
Shukla, A., Singh, S. P., & Tiwari, S. (2015). Transformation of toxic potential of Jatropha curcas (Ratanjyot) into protein source: A mini-review. Journal of Advanced Veterinary and Animal Research, 2(2), 89-94. https://doi.org/10.5455/javar.2015.b82
Silitonga, A. S., Masjuki, H. H., Mahlia, T. M. I., Ong, H. C., Chong, W. T., & Boosroh, M. H. (2013). Overview properties of biodiesel–diesel blends from edible and non-edible feedstock. Renewable and Sustainable Energy Reviews, 22. 346-360. https://doi.org/10.1016/j.rser.2013.01.055
Smith, A. A., Dumas, A., Yossa, R., Overturf, K. E., & Bureau, D. P. (2017). Effects of soybean and sunflower meals on the growth, feed utilization, and gene expression in two Canadian strains of juvenile Arctic charr (Salvelinus alpinus). Aquaculture, 481, 191-201. https://doi.org/10.1016/j.aquaculture.2017.08.038
Solomon, S. G., Okomoda, V. T., & Torkor, E. F. (2016). Growth performance of Clarias gariepinus fingerlings fed Jatropha curcas kernel meal. International Journal of Aquaculture, 6(1), 1-6. https://doi.org/10.5376/ija.2016.06.0001
Srinivasan, N., Palanisamy, K., & Mulpuri, S. (2019). Jatropha: phytochemistry, pharmacology, and toxicology. In Jatropha, Challenges for a New Energy Crop. Sustainable Multipurpose Crop, 3(1), 415-435. https://doi.org/10.1007/978-981-13-3104-6_20
Suprayogi, W. P. S., Ratriyanto, A., Akhirini, N., Hadi, R. F., Setyono, W., & Irawan, A. (2022). Changes in nutritional and antinutritional aspects of soybean meals by mechanical and solid-state fermentation treatments with Bacillus subtilis and Aspergillus oryzae. Bioresource Technology Reports, 17, 100925. https://doi.org/10.1016/j.biteb.2021.100925
Syed, D., Chamcheu, J.-C., Adhami, V., & Mukhtar, H. (2013). Pomegranate extracts and cancer prevention: Molecular and cellular activities. Anti-Cancer Agents in Medicinal Chemistry, 13(8), 1149-1161. https://doi.org/10.2174/1871520611313080003
Tadesse, E., & Tadesse, W. (2017). Jatropha curcas : Nature , Uses and Factors Influencing its Management. Journal of Earth and Environmental Sciences, 2017(6). 1-14. https://doi.org/10.29011/JEES-128
Takwin, B. A., Perdana, D. P., Muktiniati, M., & Azhar, F. (2023). Utilization of jatropha leaf (Jatropa curcas) extract as immune system enhancer of vannamei shrimp (Litopenaeus vannamei) infected with Vibrio parahaemolyticus. Journal of Aquaculture and Fish Health, 12(1), 12-20. https://doi.org/10.20473/jafh.v12i1.29898
Takwin, B. A., Setyowaty, D. N., & Azhar, F. (2022). The effect of Jatropa leaf extract (Jatropa curcas) for the immune system of vannamei (Litopenaeus vannamei) infected by Vibrio harveyi. Jurnal Ilmu Kelautan Kepulauan, 5(2), 598-609. https://doi.org/10.33387/jikk.v5i2.5483
Takwin, B. A., & Pratama, M. H. A. (2025). Respon pertumbuhan udang vaname (Litopenaeus vannamei) terhadap pakan ekstrak daun jarak pagar (Jatropha curcas) dengan dosis berbeda. Journal of Microbiology, Biotechnology and Conservation, 1(3), 1-8. https://doi.org/10.29303/jmbc.v1i3.7399
Veerabhadrappa, M. B., Shivakumar, S. B., & Devappa, S. (2014). Solid-state fermentation of Jatropha seed cake for optimization of lipase, protease and detoxification of anti-nutrients in Jatropha seed cake using Aspergillus versicolor CJS-98. Journal of Bioscience and Bioengineering, 117(2), 208-214. https://doi.org/10.1016/j.jbiosc.2013.07.003
Wafar, R. J., Yakubu, B. ;, Yusuf, B. ;, & Antyev, M. (2018). Effect of feeding raw and differently processed kapok (Ceiba pentandra) seed meal on the growth performance and carcass characteristics of weaner rabbits. Nigerian J. Anim. Sci 20(2), 258-270. https://doi.org/10.4314/tjas.v20i2
Wang, L., Gao, C., Wang, B., Wang, C., Sagada, G., & Yan, Y. (2023). Methionine in fish health and nutrition: Potential mechanisms, affecting factors, and future perspectives. Aquaculture, 568, 739310. https://doi.org/10.1016/j.aquaculture.2023.739310
Workagegn, K. B., Ababbo, E. D., & Tossa, B. T. (2013). The effect of dietary inclusion of Jatropha curcas kernel meal on growth performance, feed utilization efficiency and survival rate of juvenile Nile tilapia. Journal of Aquaculture Research and Development, 4(5), 1-5. https://doi.org/10.4172/2155-9546.1000193
Xing, S., Liang, X., Zhang, X., Oliva-Teles, A., Peres, H., Li, M., Wang, H., Mai, K., Kaushik, S. J., & Xue, M. (2024). Essential amino acid requirements of fish and crustaceans, a meta-analysis. Reviews in Aquaculture, 16(3), 1069-1086. https://doi.org/10.1111/raq.12886
Yadav, N. K., Deepti, M., Patel, A. B., Kumar, P., Angom, J., Debbarma, S., Singh, S. K., Deb, S., Lal, J., & Vaishnav, A. (2025). Dissecting insects as sustainable protein bioresource in fish feed for aquaculture sustainability. Discover Food, 5(1), 1-28. https://doi.org/10.1007/s44187-025-00318-5
Yan, Y., Li, X., Zhang, C., Lv, L., Gao, B., & Li, M. (2021). Research progress on antibacterial activities and mechanisms of natural alkaloids: A review. Antibiotics, 10(3), 1-30. https://doi.org/10.3390/antibiotics10030318
Yaqoob, H., Teoh, Y. H., Sher, F., Ashraf, M. U., Amjad, S., Jamil, M. A., Jamil, M. M., & Mujtaba, M. A. (2021). Jatropha curcas biodiesel: A lucrative recipe for Pakistan’s energy sector. Processes, 9(7), 1-36. https://doi.org/10.3390/pr9071129
Zhao, Y., Wang, Y., Wang, H., Wu, Y., Makkar, H. P., & Liu, J. (2018). Nutritional value of detoxified Jatropha curcas seed cake protein isolates using rats as an animal model. Animal Nutrition, 4(4), 429-434. https://doi.org/10.1016/j.aninu.2018.03.003
Zhang, Z., Chang, Y., Tang, H., Zhao, H., Chen, X., Tian, G., Liu, G., Cai, J., & Jia, G. (2021). Bio-detoxification of Jatropha curcas L. cake by a soil-borne Mucor circinelloides strain using a zebrafish survival model and solid-state fermentation. Journal of Applied Microbiology, 130(3), 852-864. https://doi.org/10.1111/jam.14825
DOI: http://dx.doi.org/10.15578/jra.20.2.2025.195-228

Jurnal Riset Akuakultur is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

















