CHITOSAN PRODUCTION FROM SQUID BONE Loligo. Sp WITH DIFFERENT CONCENTRATIONS OF SODIUM HYDROXIDE

Samsiana Arsyad, Krisman Umbu Henggu, Yatris Rambu Tega

Abstract


This study aims to examine the effect of different concentrations of NaOH (60%, 70%, and 80%) on the isolation process of chitosan from by-products of squid bone (Loligo sp). The resulting chitosan was then tested for water content, solubility, yield, degree of deacetylation, and functional groups. The results showed that the physical appearance of chitosan tends to be white, specific to the characteristics of commercial chitosan. The use of different NaOH concentrations only affects the water content. The water content of chitosan in the 70% and 80% NaOH treatments has met the maximum chitosan quality standard of 12%. The highest chitosan solubility was obtained in the 70% NaOH treatment, namely 97.76%. Likewise, the best degree of chitosan deacetylation reached 95% (70% NaOH treatment), while the average yield of chitosan obtained reached 25.55%. In general, the absorption values of functional groups in the NaOH treatment (60%, 70%, 80%) showed that there were characteristics of chitosan, namely carbonyl (C=O) and amino (N-H2) vibrations in the fingerprint area (~1500–3000 cm-1). and a widening of the absorption band ~1600-3500 cm-1 caused by O-H stretching and N-H vibrations due to deacetylation. Other characteristics are aliphatic C-H vibrations, –NH bond deformation, and glycosidic chitosan (C-O-C) vibrations at a wavelength of ~664–1600 cm-1.

Keywords


By-products , Deacetylation, functional groups.

Full Text:

PDF

References


Anicuta, S., Dobre, L., Stroescu, M., & Jipa, I. (2010). Fourier transform infrared (ftir) spectroscopy for characterization of antimicrobial films containing chitosan. Analele Universitatii Din Oradea Fascicula: Ecotoxicologie, Zootehnie Si Tehnologii de Industrie Alimentara, 1234–1240.

Annisaq, N. (2020). Pembuatan Kitosan Dari Kitin Dari Limbah Tulang Dalam Cumi-Cumi Making Chitosan from Chitin From Bone Waste in Squid. 6(1), 62–69.

Aranaz, I., Acosta, N., Civera, C., Elorza, B., Mingo, J., Castro, C., Gandía, M. de los L., & Caballero, A. H. (2018). Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives. Polymers, 10(2). https://doi.org/10.3390/polym10020213.

Aranaz, I., Alcántara, A. R., Civera, M. C., Arias, C., Elorza, B., Caballero, A. H., & Acosta, N. (2021). Chitosan: An overview of its properties and applications. Polymers, 13(19). https://doi.org/10.3390/polym13193256.

Bayu, A., Nandiyanto, D., Oktiani, R., & Ragadhita, R. (2019). Indonesian Journal of Science & Technology How to Read and Interpret FTIR Spectroscope of Organic Material. 1, 97–118.

Badan Standarisasi Nasional [BSN]. (2013). Stadar Mutu Kitosan SNI No. 7949: 2013. Jakarta (ID).

Dahmane, E. M., Taourirte, M., Eladlani, N., & Rhazi, M. (2014). Extraction and Characterization of Chitin and Chitosan from Parapenaeus longirostris from Moroccan Local Sources. International Journal of Polymer Analysis and Characterization, 19(4), 342–351. https://doi.org/10.1080/1023666X.2014.902577.

Dompeipen, E. J., Kaimudin, M., & Dewa, R. P. (2016). Isolasi Kitin Dan Kitosan Dari Limbah Kulit Udang Isolation. Majalah BIAM, 12(1), 32–38. http://ejournal.kemenperin.go.id/bpbiam/article/view/2326.

Henggu, K. U. (2021). Morphological characteristics and chemical composition of Cuttlebone (Sepia sp.) at Muara Angke fishing port, Jakarta Indonesia. IOP Conference Series: Earth and Environmental Science, 718(1). https://doi.org/10.1088/1755-1315/718/1/012034.

Hossain, M. S., & Iqbal, A. (2014). Production and characterization of chitosan from shrimp waste. J. Bangladesh Agril. Univ, 12(1), 153–160.

Huang, Y. L., & Tsai, Y. H. (2020). Extraction of chitosan from squid pen waste by high hydrostatic pressure: Effects on physicochemical properties and antioxidant activities of chitosan. International Journal of Biological Macromolecules, 160, 677–687. https://doi.org/10.1016/j.ijbiomac.2020.05.252.

Joseph, S. M., Krishnamoorthy, S., Paranthaman, R., Moses, J. A., & Anandharamakrishnan, C. (2021). A review on source-specific chemistry, functionality, and applications of chitin and chitosan. Carbohydrate Polymer Technologies and Applications, 2(January), 100036. https://doi.org/10.1016/j.carpta.2021.100036.

Kamran, U., & Park, S. J. (2020). Tuning ratios of KOH and NaOH on acetic acid-mediated chitosan-based porous carbons for improving their textural features and CO2 uptakes. Journal of CO2 Utilization. 101212. https://doi.org/10.1016/j.jcou.2020.101212.

Manigandan, V., Karthik, R., Ramachandran, S., & Rajagopal, S. (2018). Chitosan Applications in Food Industry. In Biopolymers for Food Design (Issue 2002). Elsevier Inc. https://doi.org/10.1016/B978-0-12-811449-0.00015-3.

Messerli, M. A., Raihan, M. J., Kobylkevich, B. M., Benson, A. C., Bruening, K. S., Shribak, M., Rosenthal, J. J. C., & Sohn, J. J. (2019). Construction and composition of the squid pen from doryteuthis pealeii. Biological Bulletin, 237(1), 1–15. https://doi.org/10.1086/704209.

Pellis, A., Guebitz, G. M., & Nyanhongo, G. S. (2022). Chitosan: Sources, Processing and Modification Techniques. Gels, 8(7), 5–25. https://doi.org/10.3390/gels8070393.

Rahmawati, H., & Iskandar, D. (2014). Sitesis karboksimetil kitosan . Jurnal Kimia. 6 (2): 1979-8415

Ramya, R., Venkatesan, J., Kim, S. K., & Sudha, P. N. (2012). Biomedical Applications of Chitosan : An Overview. 2(2). https://doi.org/10.1166/jbt.2012.1030.

Rochima, E. (2007). Karakterisasi kitin dan kitosan asal limbah rajungan cirebon jawa barat. X, 9–22.

Rochima, E., Syah, S. D., & Suhartono, M. T. (2004). Derajat Deasetilasi Kitosan Hasil Reaksi Enzimatis Kitin Deasetilase Isolat Bacillus papandayan K29-14.

Rochmawati, Z. N., Nabila, F., & Ainurrohmah, C. (2015). KARAKTERISASI KITOSAN YANG DIISOLASI DARI CANGKANG INTERNAL CUMI-CUMI.

Siregar, E. C., & Hakim, L. (2016). Jurnal Teknologi Kimia Unimal PEMBUATAN KITOSAN DARI TULANG SOTONG. 2(November), 37–44.

Swiatkiewicz, S., Swiatkiewicz, M., & Jozefiak, D. (2015). Chitosan and its oligosaccharide derivatives ( chito-oligosaccharides ) as feed supplements in poultry and swine nutrition. 99, 1–12. https://doi.org/10.1111/jpn.12222

Umbu Henggu, K., Lapu, R. U., Takanjanji, P., Fretty, R., Djawa, N., Lingga, S. R., Abbas, S., Ngunju, H. H., Willy, I. R., & Nalu, N. T. (2022). Modifikasi Kitosan Dari Limbah Cangkang Kepiting Sebagai Sediaan Material Membran Filtrasi Air. Jambura Fish Processing Journal, 4(2), 72–82. http://ejurnal.ung.ac.id/index.php/jfpj/issue/archive.

Umemura, K., & Kawai, S. (2007). Modification of chitosan by the Maillard reaction using cellulose model compounds. 68, 242–248. https://doi.org/10.1016/j.carbpol.2006.12.014.

Yusharani, M. S., Stenley, Harmami, Ulfin, I., & Ni’Mah, Y. L. (2019). Synthesis of water-soluble chitosan from squid pens waste as raw material for capsule shell: Temperature deacetylation and reaction time. IOP Conference Series: Materials Science and Engineering, 509(1). https://doi.org/10.1088/1757-899X/509/1/012070.




DOI: http://dx.doi.org/10.15578/aj.v5i1.11538

Refbacks

  • There are currently no refbacks.




 Citation

           

Pusat Penelitian dan Pengabdian Kepada Masyarakat
Politeknik Kelautan dan Perikanan Dumai

Jl. Wan Amir No. 1, Kel. Pangkalan Sesai, Kec. Dumai Barat, Kota Dumai

Telp/Fax: (0765) 4300443

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats