Yuni Puji Hastuti, Moh. Burhanuddin Mahmud, Yuli Siti Fatma, Ridwan Affandi, Kukuh Nirmala


Sea cucumber Holothuria scabra was reared on a small scale with the addition of seaweed Gracilaria sp. as a phytoremediation agent. This research aimed to determine the effect of Gracilaria sp. on water quality, physiological response, and growth performance of H. scabra. Ten individuals of H. scabra with an initial length of 5 ± 0.09 cm and an initial weight of 7.6 ± 0.2 g were reared in a culture tank (20 cm x 30 cm x 20 cm) with 15 cm of water depth. Gracilaria sp. was floated on the culture tank at three weight levels with three replicates, i.e., low (15 g); medium (30 g); and high seaweed density (45 g), with the control (0 g), during the 30-day rearing period. Results showed no significant difference in water temperature, dissolved oxygen (DO), salinity, and total ammonia nitrogen (TAN) between all treatments except for pH. There were no significant differences in ammonia and nitrite concentrations and significant differences in nitrate concentration and total organic matter (TOM) between all treatments and the control. On day 30, the application of Gracilaria sp. exhibited a lower nitrate concentration than the control. Gracilaria sp. maintained the water quality in the culture tank within a tolerable range for H. scabra. On the physiological response of H. scabra, high seaweed density exhibited the lowest blood cholesterol and glucose levels on day 30 and the highest specific growth rate (SGR) in weight (0.59 ± 0.2%) and length (1.16 ± 0.09%). The survival rate of H. scabra in all treatments reached 100%, suggesting the indoor cultivation system in this experiment did not negatively affect the growth of H. scabra.



algae; environment; mariculture; phytoremediation; sandfish

Full Text:



APHA. (2005). Standard Methods for the Examination of Water and Wastewater (p. 1368). Washington DC: APHA/AWWA/WEF.

Asha, P.S. & Muthiah, P. (2005). Effects of temperature, salinity and pH on larval growth, spesific and development of the sea cucumber Holothuria spinifera theel. Aquaculture, 250(3), 823-829. http://dx.doi.org/10.1016/ j.aquaculture.2005.04.075.

Barham, D. & Trinder, P. (1972). An improved colour reagent for the determination of blood glucose by oxidase system. Analyst, 97(151), 142-145. http://dx.doi.org/10.1039/an9729700142.

Bell, J.D., Purcell, S.W., & Nash, W.J. (2008). Restoring small-scale fisheries for tropical sea cucumbers. Ocean and Coastal Management, 51(8-9), 589–593. https://doi.org/10.1016/j.ocecoaman.2008.06.011.

Capillo, G., Sanfilippo, M., Palato, S., & Manganaro, A. (2015, December). Growth of Gracilaria gracilis in Fish Farming and Phytoremediation (pp. 98-99). Genova, ‎Italy: Conference: 88 Convegno Nazionale SIBS. http://dx.doi.org/10.13140/RG.2.1.5141.4804.

Chen, C., & Wang, J.L. (2006). Cation (K+, Mg2+, Na+, Ca2+) release in Zn(II) biosorption by Saccharomyces cerevisiae. Huan Jing Ke Xue, 27(11), 2261-2267.

Choo, P.S. (2008). The Philippines: A Hotspot of Sea Cucumber Fisheries in Asia. In Toral-Granda, V., Lovatelli, A., & Vasconcellos, M. (Eds.). Sea Cucumbers: A Global Review of Fisheries and Trade (p. 119–140). Rome. FAO Fisheries and Aquaculture Technical Paper No. 516.

Conand, C. (2017). Expansion of global sea cucumber fisheries buoys exports. Revista de Biologia Tropical, 65(1), S1–S10. http://dx.doi.org/10.15517/rbt.v65i1-1.31661.

Conand, C. (2018). Tropical sea cucumber fisheries: changes during the last decade. Marine Pollution Bulletin, 133, 590–594. http://dx.doi.org/10.1016/j.marpolbul.2018.05.014.

Davies, T.W., Jenkins, S.R., Kingham, R., Kenworthy, J., Hawkins, S.J., & Hiddink, J.G. (2011). Dominance, biomass and extinction resistance determine the consequences of biodiversity loss for multiple coastal ecosystem processes. PLoS One, 6, e28362. http://dx.doi.org/10.1371/journal.pone.0028362.

Eddy, F.B. (2005). Ammonia in estuaries and effect on fish. Journal of Fish Biology, 67(6), 1495-1513. https://doi.org/10.1111/j.1095-8649.2005.00930.x.

Francis-Floyd, R., Watson, C., Petty, D., & Pouder, D.B. (2012). Ammonia in Aquatic Systems (p. 5). Florida: University of Florida.

Goddard, S. (1996). Feed Management in Intensive Aquaculture (p. 194). New York: Chapman & Hall.

Hastuti, Y.P. (2011). Nitrification and denitrification in pond. Jurnal Akuakultur Indonesia, 10(1), 89-98.

Hastuti, Y.P., Affandi, R., Safrina, M.D., Faturrohman, K., & Nurussalam, W. (2015). Optimum salinity for growth of mangrove crab Scylla serrata seed in recirculation systems. Jurnal Akuakultur Indonesia, 14(1), 50–57.

Hastuti, Y.P., Rusmana, I., Nirmala, K., & Affandi, R. (2017). Activities of NH4+ and NO2- oxidizing bacteria in a recirculating system of mud crab Scylla serrata culture with different number of shelter. Research Journal of Microbiology, 12 (2), 137-145. http://dx.doi.org/10.3923/jm.2017.137.145.

Ihsan, Y.N., Bangsa, R.K., Fellatami, K., & Pribadi, T.D.K. (2018). The ability of Gracilaria sp. to absorb ammonia (NH3-N) and its effect on chlorophyll content and growth. Omni-Akuatika, 14(3), 96–105.

Indriana, L., Firdaus, M., Supono, & Munandar, H. (2017). Survival rate and growth of juvenile sandfish (Holothuria scabra) in various rearing conditions. Marine Research in Indonesia, 42(1), 11-18. https://doi.org/10.14203/mri.v41i2.156.

Kühnhold, H., Steinmann, N., Huang, Y.-H., Indriana, L., Meyer, A., & Kunzmann, A. (2019). Temperature-induced aerobic scope and Hsp70 expression in the sea cucumber Holothuria scabra. PLoS ONE, 14(3): e0214373. https://doi.org/ 10.1371/journal.pone.0214373.

Meirinawati, H., Prayitno, H.B., Indriana, L.F., Firdaus, M, & Wahyudi, A.J. (2020). Water quality assessment and monitoring of closed rearing system of the sea cucumber Holothuria scabra (review). ASEAN Journal on Science & Technology for Development, 37(2), 73-80.

Ministry of Trade, Republic of Indonesia. (2016). Sea cucumber market brief report (HS 0308.19) on the Hong Kong SAR market. Consulate General of the Republic of Indonesia in People’s Republic of China. I-IV-4.

Muchlisin, Z., Afrido, F., Murda, T., Fadli, N., Muhammadar, A., Jalil, Z., & Yulvizar, C. (2016). The effectiveness of experimental diet with varying levels of papain on the growth performance, survival rate and feed utilization of keureling fish (Tor tambra). Biosaintifika, 8(2), 172-177. http://dx.doi.org/10.15294/biosaintifika.v8i2.577.

Murray, R.K., Granner, D.K., & Rodwell, V.W. (2009). Biokimia Harper (p. 352). Jakarta: EGC.

Namukose, M., Msuya, F.E., Ferse, S., Slater, M.J., & Kunzmann, A. (2016). Growth performance of the sea cucumber Holothuria scabra and the seaweed Eucheuma denticulatum: integrated mariculture and effects on sediment organic characteristics. Aquaculture Environment Interactions, 8, 179-189. http://dx.doi.org/10.3354/aei00172.

NRC. (1977). Nutrient Requirements of Warmwater Fishes (p. 87). Washington DC: The National Academies Press.

Purcell, W. (2014). Value, market preferences and trade of Beche-de-mer from Pacific Island sea cucumbers. PLoS One, 9(4), e95075. https://doi.org/10.1371/journal.pone.0095075.

Richmond, W. (1973). Preparation and properties of a cholesterol oxidase from Nocardia sp. and its application to the enzymatic assay of total cholesterol in serum. Clinical Chemistry, 19(12), 1350-1356. https://doi.org/10.1093/clinchem/19.12.1350.

Robinson, G., Caldwell, G.S., Jones, C.L.W., & Stead, S.M. (2018). The effect of resource quality on the growth of Holothuria scabra during aquaculture waste bioremediation. Aquaculture, 499, 101-108, doi:10.1016/j.aquaculture.2018.09.024.

Rodnick, K.J. & Planas, J.V. (2016). The stress and stress mitigation effects of exercise: cardiovascular, metabolic, and skeletal muscle adjustments. In Schreck, C.B., Tort, L., Farrell A., & Brauner C. (Eds.). Biology of Stress in Fish (p. 602). Cambridge: Academic Press.

Schreck, C.B., & Tort, L. (2016). The concept of stress in fish. In Schreck, C.B., Tort L., Farrell A., & Brauner C. (Eds.). Biology of Stress in Fish (p. 602). Cambridge: Academic Press.

Sicuro, B., & Levine, J. (2011). Sea cucumber in the Mediterranean: a potential species for aquaculture in the Mediterranean. Reviews in Fisheries Science, 19(3), 299-304. http://dx.doi.org/10.1080/10641262.2011.598249.

Sidatik. (2015). Sand sea cucumber production data 2007-2015. Retrieved from http://statistik.kkp.go.id.

Sulardiono, B., Purnomo, W.P., & Haeruddin. (2017). Environmental suitability for Holothuroidea habitat in Karimunjawa. Sainstek Perikanan, 12(2), 93-97. https://doi.org/10.14710/ijfst.12.2.93-97.

Taurusman, A.A., Shafrudin, D., Nurani, T.W., & Komarudin, D. (2018). Recovery stock capture fisheries capture in Thousand islands: an ecosystem approach. Marine Fisheries, 9(2), 235-244.

Tel, Y. (2018). Polyculture of Sea Cucumber Holothuria scabra with Sea Weed Gracilaria arcuata in Pen Culture Method. Proceeding Book: 1st International Proceeding: Building Synergy on Diversity in The Borders “Embodying The Global Maritime Axis”, 1(1). 163-168.

Thayer, G.W., McTigue, T.A., Salz, R.J., Merkey, D.H., Burrows, F.M., & Gayaldo P.F. (2005). Science-based restoration monitoring of coastal habitats, volume two: tools for monitoring coastal habitats. Silver Spring: NOAA Coastal Ocean Program Decision Analysis Series 23:2.

Tomatala, P., Letsoin, P.P., & Kadmaer, E.M.Y. (2019). Effectiveness of rearing sandfish, Holothuria scabra and seaweed, Gracilaria sp. with the polyculture system (in Indonesia). Jurnal Ilmiah Platax, 7(1), 266-273.

Verghese, B., Radhakrishnan, E.V., & Padhi, A. (2007). Effect of environmental parameters on immune response of the Indian spiny lobster, Panulirus homarus (Linnaeus, 1758). Fish & Shellfish Immunology, 23(5), 928-936. http://dx.doi.org/10.1016/j.fsi.2007.01.021

Wang, H., Liu, C.-F., Qin, C.-X., Cao, S.-Q., & Ding, J. (2007). Using a macroalgae Ulva pertusa biofilter in a recirculating system for production of juvenile sea cucumber Apostichopus japonicus. Aquacultural Engineering, 36(3), 217–224. http://dx.doi.org/10.1016/j.aquaeng.2007.01.008.

Xia, S., Zhao, P., Chen, K., Li, Y., Liu, S., Zhang, L., & Yang, H. (2012). Feeding preferences of the sea cucumber Apostichopus japonicus (Selenka) on various seaweed diets. Aquaculture, 344-349, 205-209. http://dx.doi.org/10.1016/j.aquaculture.2012.03.022

Yu, Z.H., Qi, Z.H., Hu, C.Q., Liu, W.G., & Huang, H.H. (2012). Effects of salinity on ingestion, oxygen consumption and ammonium excretion rates of the sea cucumber Holothuria leucospilota. Aquaculture Research, 44(11), 1760-1767. https://doi.org/10.1111/j.1365-2109.2012.03182.x.

Zamora, L.N., & Jeffs, A.G. (2011). Feeding, selection, digestion and absorption of the organic matter from mussel waste by juveniles of the deposit-feeding sea cucumber, Australostichopus mollis. Aquaculture, 317(1-4), 223–228. https://doi.org/10.1016/j.aquaculture.2011.04.011.

DOI: http://dx.doi.org/10.15578/iaj.17.1.2022.61-72

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License
Indonesian Aquaculture Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats
p-ISSN: 0215-0883
e-ISSN: 2502-6577


Hasil gambar untuk isjd