Mira Mawardi, Agustin Indrawati, Angela Mariana Lusiastuti, I Wayan Teguh Wibawan


Gram-positive spore bacteria are widely used as probiotics in general sectors. However, there are still limited bacterial isolates as probiotic candidates available from indigenous isolates, especially in aquaculture. This study aimed to obtain potential spore-forming isolates as probiotic candidate for tilapia. Tilapia fish samples were collected from Sukabumi, Ciamis, Serang, and Papua. Bacterial isolates were isolated from the digestive tract of tilapia. Bacteria were identified based on their morphological, molecular characteristics, complete genome composition, and cell surface identification based on hydrophobic properties. In this study, six bacteria were isolated and identified by molecular characteristics using 16S rRNA sequences. Based on the phylogenetic analysis, the 9 PP isolate was Priestia megaterium basonym: Bacillus megaterium, CMS 16N isolate was Brevibacillus halotolerans, PPN 10 isolate was Bacillus sp., 3.1 SKBM isolate was Bacillus mycoides, CMS 22 N and SRG32 isolate were Bacillus subtilis. Six bacteria had different phenotypicals, ATGC sequence compositions, and a higher proportion of total G~C sequence composition above 50%. The coherent cell surface hydrophobicity test was positive on the SAT, SA, AA, and compact growth patterns in soft-agar media for 9 PP, CMS 22 N, and SRG32 isolates. From our study, the indigenous spore-forming bacteria isolated from tilapia stomachs are enzymatic bacteria, which have a strong attachment to host tissue and high potential as a probiotic candidate for fish. Various hydrophobicity test results from each isolate indicate that the protein composition in the cell surface is different.


Bacillus megaterium, Brevibacillus halotolerans, Bacillus mycoides, Bacillus subtilis, Probiotic

Full Text:



Alayande, K. A., Aiyegoro, O. A., & Ateba, C. N. (2020). Probiotics in animal husbandry: applicability and associated risk factors. Sustainability Journal. 12(3),1087.

Atipairin, A., Songnaka, N., Krobthong, S., Yingchutrakul, Y., Chinnawong, T., & Wanganuttara, T. (2022). Identification and characterization of a potential antimicrobial peptide isolated from soil Brevibacillus sp. WUL10 and Its activity against MRSA pathogens. Trop Med Infect Dis Jur 7;7(6):93.

Bach, E., Rangel, C. P., Ribeiro, I. D. A., & Passaglia, L .M. P. (2022). Pangenome analyses of Bacillus pumilus, Bacillus safensis, and Priestia megaterium exploring the plant-associated features of bacilli strains isolated from canola. Molecular Genetics and Genomics,297:1063–1079. doi: 10.1007/s00438-022-01907-0.

Bhat, A. R., Irorere, V. U., Bartlett, T., Hill, D., Kedia, G., Morris, M. R., Charalampopoulos D., & Radecka, I. (2013). Bacillus subtilis natto: a non-toxic source of poly-γ-glutamic acid that could be used as a cryoprotectant for probiotic bacteria. AMB Express.3:36. doi: 10.1186/2191-0855-3-36.

Camacho, M. I., García, J. M., Rogen, D., Ferrer, A., Wieme, A. D., Vandamme, P., Rodríguez, S., … & Meriño, T-L,. (2022). Isolation and identification of a Bacillus sp. from freshwater sediment displaying potent activity against bacteria and phytopathogen fungi. Current Microbiology,79(12), 398. doi: 10.1007/s00284-022-03090-2.

Caulier, S., Nannan, C., Gillis, A., Licciardi. F., Bragard, C., & Mahillon. (2019). Overview of the antimicrobial compounds produced by members of the bacillus subtilis group. Frontiers in Microbiolgy.10-2019.

Che, J., Liu, B., Ruan, C., Tang, J., & Huang, D. (2015). Biocontrol of Lasiodiplodia theobromae, which causes black spot disease of harvested wax apple fruit, using a strain of Brevibacillus brevis FJAT-0809-GLX. Crop Prot 67:178–183. DOI:10.1016/j.cropro.2014.10.012.

Choi, A., Nam, Y. H., Baek, K., & Chung, E. J. (2019). Brevibacillus antibioticus sp. nov., with a broad range of antibacterial activity, isolated from soil in the Nakdong River. J Microbiol. 57(11):991-996. doi: 10.1007/s12275-019-9325-y.

Cochrone, S.A., & Vederas, J.C. (2016). Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates, Medicinal Research Reviews;36(1):4-31. doi: 10.1002/med.21321.

Deng, B., Chen, Y., Gong, X., Dai, Y., Zhan, K., Lin, M., Wang, L., & Zhao, G. (2021). Effects of Bacillus megatherium 1259 on growth performance, nutrient digestibility, rumen fermentation, and blood biochemical parameters in holstein bull calves. Animals Journal. 11(8)2379.

Eom, J. S., & Choi, H. S. (2016). Inhibition of Bacillus cereus growth and toxin production by Bacillus amyloliquefaciens RD7-7 in Fermented Soybean Products. J. Microbiol. Biotechnol.26(1), 44–55. doi: 10.4014/jmb.1509.09090.

Farag, M. M. S., Moghannem, S. A. M., Shehabeldine, A. M., & Azab, M. S. (2020). Antitumor effect of exopolysaccharide produced by Bacillus mycoides. Microb Pathog;140:103947. doi: 10.1016/j.micpath.2019.103947.

Faraji, F., Mahandra, H., & Ghahreman, A. (2022). Evaluation of different amino acids on growth and cyanide production by bacillus megaterium for gold recovery. Sustainability Journal, 14(15), 9639.

Fiedoruk, K., Drewnowska, J. M., Mahillon, J., Zambrzycka, M., & Swiecicka, I. (2021). Pan-Genome Portrait of Bacillus mycoides provides insights into the species ecology and evolution. Microbiol Spectr 3:9(1). : e00311-21. doi: 10.1128/Spectrum.00311-21.

Fyzul, A.N., & Austin, B. (2015). Probiotics, immunostimulants, plant products and oral vaccines, and their role as feed supplements in the control of bacterial fish disease. Journal of Fish Disease. 38(11)937-955. doi: 10.1111/jfd.12313.

Goswami, G., Panda, D., Samanta, R., Boro, R. C., Modi, M. H., Bujarbaruah, K. M., & Barooah, M. (2018). Bacillus megaterium adapts to acid stress condition through a network of genes: Insight from a genomewide transcriptome analysis. Scientific Reports.8:16105. doi: 10.1038/s41598-018-34221-0.

Grage, K., McDermott, P., & Rehm, B.H.A. (2017). Engineering Bacillus megaterium for production of functional intracellular materials. Microbial Cell Factories,16:211. DOI 10.1186/s12934-017-0823-5.

Guerrero-Barajas, C., Constantino-Salinas, E.A., Amora-Lazcano, E., Tlalapango-Angeles, D., Mendoza-Figueroa, J., Cruz-Maya, J.A., & Jan-Roblero, J. (2020). Bacillus mycoides A1 and Bacillus tequilensis A3 inhibit the growth of a member of the phytopathogen Colletotrichum gloeosporioides species complex in avocado. J Sci Food Agric100(10):4049-4056. doi: 10.1002/jsfa.10450.

Harirchi, S., Sar, T., Ramezani, M., Aliyu, H., Etemadifar, Z., Nojoumi SA, Yazdian, F., … & Taherzadeh, M. J. (2022). Bacillales: from taxonomy to biotechnological and industrial perspectives. Microorganisms Journal, 10(12),2355.

Hassan, S. W. M & Ibrahim, H. A. H. (2017). Production, Characterization and Valuable Applications of Exopolysaccharides from Marine Bacillus subtilis SH1. Pol J Microbiol 4;66(4):449-461. doi: 10.5604/01.3001.0010.7001.

Huang, Y., Chen, W-Y., Li, J., Ghorab, M. A., Alansary, N., El-Hefny, D. E., El-Sayyad, G. S., … & Chen, S. (2022). Novel mechanism and degradation kinetics of allethrin using Bacillus megaterium strain HLJ7 in contaminated soil/water environments. Environmental Research, 214:3. :113940.doi: 10.1016/j.envres.2022.113940.

Hussain, A. A., Abdel-Salam, M. S., Abo-Ghalia, H. H., Hegazy, W. K., & Hafez, S.S. (2017). Optimization and molecular identification of novel cellulose degrading bacteria isolated from Egyptian environment. Journal of Genetic Engineering and Biotechnology,15(1)77–85. doi: 10.1016/j.jgeb.2017.02.007.

Jiang, H., Wang, X., Xiao, C., Wang, W., Zhao, X., Sui, J., Sa, R., Guo, T. L., & Liu, X. (2015). Antifungal activity of Brevibacillus laterosporus JX-5 and characterization of its antifungal components. World J Microbiol Biotechnol 31(10)1605–1618. doi: 10.1007/s11274-015-1912-4.

Johnson, S. T. & Dunlap, C. A (2019). Phylogenomic analysis of the Brevibacillus brevis clade: a proposal for three new Brevibacillus species, Brevibacillus fortis sp. nov., Brevibacillus porteri sp. nov. and Brevibacillus schisleri sp. nov. Antonie van Leeuwenhoek,112(7)991–999. doi: 10.1007/s10482-019-01232-4.

Joo, H. J., Kim, H. Y., Kim, L. H., Lee, S., Ryu, J. G., & Lee, T. (2015). A Brevibacillus sp. antagonistic to mycotoxigenic Fusarium spp. Biol Control 87:64–70.

Karthika, A., Seeniavasagan, R., Kasimani, R., Babalola, O.O., & Vasanthy, M. (2020). Cellulolytic bacteria isolation, screening and optimization of enzyme production from vermicompost of paper cup waste. Wase Management 116:58-65. DOI: 10.1016/j.wasman.2020.06.036.

Kong, D., Wang, Y., Zhao, B., & Li, Y. (2014). Lysinibacillus halotolerans sp.Nov., isolated from saline-alkaline soil. International Journal of Systematic and Evolutionary Microbiology,64(8):2593-2598. doi: 10.1099/ijs.0.061465-0.

Krepsky, N., Ferreira, R. B. R., Nunes, A. P. F., Lins, U. G. C., Filho, F. Ce. S., Mattos-Guaraldi, A. L de., Netto-dos., & Santos. (2003). Cell surface hydrophobicity and slime production of Staphylococcus epidermidis Brazilian isolate. Current Microbiology, 46:280-286. doi: 10.1007/s00284-002-3868-5.

Lee, J. Y., Shim, J. M., Yao, Z., Liu, X., Lee, K. W., Kim, H. -J., Ham, K. -S., & Kim, J. H. (2016). Antimicrobial activity of Bacillus amyloliquefaciens EMD17 isolated from Cheonggukjang and potential use as a starter for fermented soy foods. Food Science and Biotechnology, 25(2)525–532. doi: 10.1007/s10068-016-0073-z.

Logan, N.A., & De Vos, P. (2015). Bacillus. Bergey’s Manual of Systematic of Archaea and Bacteria. 2nd edn, vol. 3. New York: Springer:304–316.

Martínez, B., García, P., & Rodríguez, A. (2019). Swapping the roles of bacteriocins and bacteriophages in food biotechnology. Curr Opin Biotechnol, 56:1-6. doi: 10.1016/j.copbio.2018.07.007.

Mattos-Guaraldi, A. L., Formiga, L. C., & Andrade, A. F. (1999). Cell surface hydrophobicity of sucrose fermenting and nonfermenting Corynebacterium diphtheriae strains evaluated by different methods. Current Microbiology 38(1):37-42. doi: 10.1007/pl00006769.

Mawardi, M., Indrawati, A., Wibawan, I. W. T., & Lusiastuti, A.M. (2023). Antimicrobial susceptibility test and antimicrobial resistance gene detection of extracellular enzyme bacteria isolated from tilapia (Oreochromis niloticus) for probiotic candidates, Veterinary World, 16(2): 264–271.

O’Connor, P. M., Kuniyoshi, T. M., Oliveira, R. P. S., Hill, C., Ross, R. P., & Cotter, P.D. (2020). Antimicrobials for food and feed; a bacteriocin perspective. Current Opinion in Biotechnology.61;160-167. doi: 10.1016/j.copbio.2019.12.023.

Panda, A. K., Bisht, S. S., DeMondal, S., Kumar, N. S, Gurusubramanian, G. G., & Panigrahi, A.K. (2014). Brevibacillus as a biological tool: a short review. Antonie van Leeuwenhoek,105(4)623–639. DOI: 10.1007/s10482-013-0099-7.

Peet, K. C., Freedman, A. J., Hernandez, H. H., Britto, V., Boreham, C., & Ajo-Franklin, J.B. (2015). Microbial growth under supercritical CO2. Appl. Environ. Microbiol, 81(8) 2881–2892. doi: 10.1128/AEM.03162-14.

Purwandari, A. R., & Chen, H. Y. (2013). Effects of probiotic Bacillus subtilis on intestinal microbial diversity and immunity of orange-spotted grouper Epinephelus coioides. Journal of Applied Biotechnology, 1(1).

Rath, S., Paul, M., Behera, K.H., & Thatoi, H. (2022). Response surface methodology mediated optimization of Lignin peroxidase from Bacillus mycoides isolated from Simlipal Biosphere Reserve, Odisha, India. Journal of Genetic Engineering and Biotechnology,20:2.

Rendueles, M. C., Duarte, A. C., Escobedo, S., Rodríguez, L., Rodríguez, A., García, P., & Rodríguez, A. (2022). Combined use of bacteriocins and bacteriophages as food biopreservatives. A review. J Food Microbiol.2:368:109611.

Ritter, A. C., Correa, A. P. F., Veras, F. F., & Brandelli, A. (2018). Characterization of Bacillus subtilis Available as Probiotics. Journal of Microbiology Research, 8(2): 23-32. doi:10.5923/j.microbiology.20180802.01.

Sathishkumar, R., Kannan, R., Jinendiran, S., Sivakumar, N., Selvakumar, G., & Shyamkumar, R. (2021). Production and characterization of exopolysaccharide from the sponge-associated Bacillus subtilis MKU SERB2 and its in-vitro biological properties. Int J Biol Macromol 1;166:1471-1479.

Seya, T., Takeda, Y., & Matsumoto M. (2019). A Toll-like receptor 3 (TLR3) agonist ARNAX for therapeutic immunotherapy. Advanced Drug Delivery Reviews,147:37-43.

Shwed, P.S., Crosthwait, J., Weedmark, K., Hoover, E., & Dussault, F. (2021). Complete genome sequences of Priestia megaterium type and clinical strains feature complex plasmid arrays. Microbiol Resour Announc, 10(27):e00403-21.

Shida, O., Takagi, H., Kadowaki, K., & Komagata, K. (1996). Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int J Syst Bacteriol 1996; 46:939-946. 10.1099/00207713-46-4-939.

Soltani, M., Ghsh, K., Hoseinifar, S. H., Kumar, V., Lymbery, A. J., Roy, S., & Ringø E. (2019). Genus bacillus, promising probiotics in aquaculture: Aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Reviews in Fisheries Science & Aquaculture, 27(3).

Song, J., Wang, Y., Song, Y., Zhao, B., Wang, H., Zhou, S., Kong, D., … & Yan, Y. (2017). Brevibacillus halotolerans sp. nov., isolated from saline soil of a paddy field. Int J Syst Evol Microbiol,67(4)772–77. doi: 10.1099/ijsem.0.001579.

Song, Z., Liu, Q., Guo, H., Ju, R., Zhao, Y., Li, J., & Liu, X. (2012). Tostadin, a novel antibacterial peptide from an antagonistic microorganism Brevibacillus brevis XDH. Biores Technol 111:504–506.

Stackebrandt, E., & Goebel, B. M. (1994). Taxonomic note: a place for DNA-DNA Reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic and Evolutionary Microbiology 44, 846–849.

Steiner, E., & Margesin, R. (2020). Production and partial characterization of a crude cold-active cellulase (CMCase) from Bacillus mycoides AR20-61 isolated from an Alpine forest site. Annals of Microbiology,70:67.

Turnip, E. R., Widanarni., & Meryandini, A. (2018). Selection of lactic acid bacteria as a probiotic and evaluated its performance on gnotobiotic catfish Clarias sp. Jurnal Akuakultur Indonesia 17(1): 68–80. DOI: 10.19027/jai.17.1.68-80.

Wibawan, I. W. T., & Lammler C. (1990). Properties of Group B Streptococci with Protein Surface Antigens X and R. Journal of Clinical Microbiology28(12):2834-2836.

Wibawan, I. W. T & Lammler C. (1991). Influence of capsular neuraminic on properties of streptococci of serological group B. Journal of General Microbiology 137(12) 2721-2725.

Xue, X., Woldemariam, N. T., Caballero-Solares, A., Umasthan, N., Fast, R. G., Taylor, R. G., Rise, M. L., & Andreassen, R. (2019). Dietary immunostimulant cpg modulates microrna biomarkers associated with immune responses in atlantic salmon (Salmo salar). Cells. Vol. 8(12):1592.

Yang, X & Yousef, A. E. (2018). Antimicrobial peptides produced by Brevibacillus spp.: structure, classification and bioactivity: a mini review. World J Microbiol Biotechnol 34:57.

Yu-Hsiang, P., Yun-Jung, C., Yung-Chuan, L., Jen-Fon, J., Kuang-Ren, C., & Jenn-Wen, H. (2017). Inhibition of cucumber Pythium damping-off pathogen with zoosporicidal biosurfactants produced by Bacillus mycoides. Journal of Plant Diseases and Protection,124:481–491.

Zhang, L., & Yi, H. (2022). Potential antitumor and anti-inflammatory activities of an extracellular polymeric substance (EPS) from Bacillus subtilis isolated from a housefly. Sci Rep 26;12(1):1383.

Zhang, X., Al-Dossary, A., Hussain, M., Setlow, P., & Li, J. (2020). Applications of Bacillus subtilis spores in Biotechnology and Advanced Materials. Applied and Enviromental Microbiology.86(17).


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License
Indonesian Aquaculture Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats
p-ISSN: 0215-0883
e-ISSN: 2502-6577


Hasil gambar untuk isjd