RESILIENCE AND PHYSIOLOGICAL RESPONSES OF THE DOMESTICATED ASIAN REDTAIL CATFISH Hemibagrus nemurus TO HYPOXIA CONDITION

Aliati Iswantari, Kurniawan Kurniawan, Vitas Atmadi Prakoso, Deni Radona, Deni Irawan, Fera Permata Putri, Wahyulia Cahyanti, Otong Zenal Arifin, Jojo Subagja, Rudhy Gustiano, Irin Iriana Kusmini, Arif Wibowo, Anang Hari Kristanto

Abstract


Hypoxia is one of the critical issues in aquaculture production systems as it can lead to physiological disturbances in cultured fish. This research aimed to evaluate the tolerance level and physiological responses of domesticated Asian redtail catfish Hemibagrus nemurus reared in various hypoxia conditions. A total of 12 fish/treatment were acclimated to gradually decreased dissolved oxygen treatments until fish experienced aquatic surface respiratory (ASR) and loss of equilibrium (LOE). Cortisol, haemoglobin, and glucose levels were detected in the blood plasma to evaluate the stress response of the fish to hypoxia. The result showed that ASR of H. nemurus was identified at 2.17 ± 0.14 ppm of dissolved oxygen (DO) concentration with the percentage of ASR was 77.67 ± 9.53%, while LOE critical of H. nemurus happened at 0.63 ± 0.15 ppm of DO where 55.56 ± 4.81% of the fish experienced LOE. There were significant differences in the values of physiological parameters (blood cortisol, haemoglobin, and glucose) between control and treatments as fish experienced LOE (P<0.05). In the present  study, it was found that the Asian redtail catfish is classified as a hypoxia-sensitive fish group. Tehis finding is valuable information for the rearing and growing of the fish to provide an optimal DO concentration for their growth and survival.


Keywords


ASR; LOE; stress; cortisol; haemoglobin; glucose

Full Text:

PDF

References


Abdel-Tawwab, M., Monier, M. N., Hoseinifar, S. H., & Faggio, C. (2019). Fish response to hypoxia stress: growth, physiological, and immunological biomarkers. Fish Physiology and Biochemistry, 45, 997-1013.

Allais, L., Zhao, C., Fu, M., Hu, J., Qin, J. G., Qiu, L., & Ma, Z. (2019). Nutrition and water temperature regulate the expression of heat-shock proteins in golden pompano larvae (Trachinotus ovata, Linnaeus 1758). Fish Physiology and Biochemistry, 45, 485–497.

Boyd, C. E. (2017). General Relationship Between Water Quality and Aquaculture Performance in Ponds. In "Fish Diseases", pp. 147-166.

Cho, H. C., Kim, J. E., Kim, H. B., & Baek, H. J. (2015). Effects of water temperature change on the hematological responses and plasma cortisol levels in growing of red spotted grouper, Epinephelus akaara. Development & Reproduciton 19, 19-24.

Cofiel, L. P. V., & Mattioli, R. (2009). L-histidine enhances learning in stressed zebrafish. Brazilian Journal of Medical and Biological Research, 42, 128-134.

Crosby, T. C., Hill, J. E., Watson, C. A., Yanong, R. P. E., & Strange, R. (2006). Effects of tricaine methanesulfonate, hypno, metomidate, quinaldine, and salt on plasma cortisol levels following acute stress in threespot gourami Trichogaster trichopterus. Journal of Aquatic Animal Health 18, 58-63.

Dagoudo, M., Qiang, J., Bao, J. W., Tao, Y. F., Zhu, H. J., Tumukunde, E. M., Ngoepe, T. K., & Xu, P. (2021). Effects of acute hypoxia stress on hemato-biochemical parameters, oxidative resistance ability, and immune responses of hybrid yellow catfish (Pelteobagrus fulvidraco × P. vachelli) juveniles. Aquaculture International, 29, 2181-2196.

Del Rio, A. M., Davis, B. E., Fangue, N. A., & Todgham, A. E. (2019). Combined effects of warming and hypoxia on early life stage Chinook salmon physiology and development. Conservation Physiology, 7, coy078.

Dhillon, R. S., Yao, L., Matey, V., Chen, B. J., Zhang, A. J., Cao, Z. D., Fu, S. J., Brauner, C. J., Wang, Y. S., & Richards, J. G. (2013). Interspecific differences in hypoxia-induced gill remodeling in carp. Physiological and Biochemical Zoology, 86, 727-39.

Dong, X. Y., Qin, J. G., & Zhang, X. M. (2011). Fish adaptation to oxygen variations in aquaculture from hypoxia to hyperoxia. Journal of Fisheries and Aquaculture, 2, 23-28.

Douxfils, J., Deprez, M., Mandiki, S. N., Milla, S., Henrotte, E., Mathieu, C., Silvestre, F., Vandecan, M., Rougeot, C., Melard, C., Dieu, M., Raes, M., & Kestemont, P. (2012). Physiological and proteomic responses to single and repeated hypoxia in juvenile Eurasian perch under domestication--clues to physiological acclimation and humoral immune modulations. Fish & Shellfish Immunology, 33, 1112-1122.

Evans, D. H., & Claiborne, J. B. (2005). "The Physiology of Fishes. ," Third Editio/Ed. Taylor and Francis.

Ferrari, S., Horri, K., Allal, F., Vergnet, A., Benhaim, D., Vandeputte, M., Chatain, B., & Begout, M. L. (2016). Heritability of boldness and hypoxia avoidance in European seabass, Dicentrarchus labrax. PLoS One, 11, e0168506.

Gibbs, M. A., Thornton, A., Pasko, S., & Crater, A. (2021). Patterns of air-breathing behavior in juvenile armored catfish, Pterygoplichthys sp. (Gill 1858). Environmental Biology of Fishes, 104, 171-180.

Gollock, M. J., Currie, S., Petersen, L. H., & Gamperl, A. K. (2006). Cardiovascular and haematological responses of Atlantic cod (Gadus morhua) to acute temperature increase. Journal of Experimental Biology, 209, 2961-2670.

Gustiano, R., Ath-thar, M., Radona, D., Subagja, J., & Kristanto, A. (2018). Diversity and aquaculture of Asian redtail catfish. IPB Press, Bogor.

He, W., Cao, Z. D., & Fu, S. J. (2015). Effect of temperature on hypoxia tolerance and its underlying biochemical mechanism in two juvenile cyprinids exhibiting distinct hypoxia sensitivities. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 187, 232-41.

Hvas, M., & Oppedal, F. (2019). Physiological responses of farmed Atlantic salmon and two cohabitant species of cleaner fish to progressive hypoxia. Aquaculture, 512, 734353.

Kurniawan, K., Gustiano, R., Kusmini, I. I., & Prakoso, V. A. (2021). Genetic resources preservation and utilization of Indonesian native freshwater fish consumption. Ecology, Environment and Conservation, 27, 227-233.

Kusmini, I. I., Kurniawan, K., Putri, F. P., Radona, D., Kristanto, A. H., & Gustiano, R. (2020). Analysis of growth and nutritional values of three generations of Asian redtail catfish (Hemibagrus nemurus). AACL Bioflux 13, 3348-3359.

Lepic, P., Stara, A., Turek, J., Kozak, P., & Velisek, J. (2014). The effects of four anaesthetics on haematological and blood biochemical profiles in vimba bream, Vimba vimba. Veterinarni Medicina, 59(2), 81-87.

Li, M., Wanga, X., Qia, C., Lia, E., Dua, Z., Qinc, J. G., & Chen, L. (2018). Metabolic response of Nile tilapia (Oreochromis niloticus) to acute and chronic hypoxia stress. Aquaculture, 495, 187–195.

Makori, A. J., Abuom, P. O., Kapiyo, R., Anyona, D. N., & Dida, G. O. (2017). Effects of water physico-chemical parameters on tilapia (Oreochromis niloticus) growth in earthen ponds in Teso North Sub-County, Busia County. Fisheries and Aquatic Sciences, 20.

OECD. (2019). Test Guideline 203. Fish, Acute Toxicity Test. OECD Guidelines for the Testing of Chemicals, Section 2. OECD Publishing, Paris.

Pastore, M. R., Negrato, E., Poltronieri, C., Barion, G., Messina, M., Tulli, F., Ballarin, C., Maccatrozzo, L., Radaelli, G., & Bertotto, D. (2018). Effects of dietary soy isoflavones on estrogenic activity, cortisol level, health and growth in rainbow trout, Oncorhynchus mykiss. Aquaculture Research, 49, 1469-1479.

Prakoso, V. A., Kim, K. T., Min, B. H., Gustiano, R., & Chang, Y. J. (2016). Lethal dissolved oxygen and blood properties of grey mullets Mugil cephalus in seawater and freshwater. Berita Biologi, 15(1), 89-94.

Prakoso, V. A., Pouil, S., Prabowo, M. N. I., Sundari, S., Arifin, O. Z., Subagja, J., Affandi, R., Kristanto, A. H., & Slembrouck, J. (2019). Effects of temperature on the zootechnical performances and physiology of giant gourami (Osphronemus goramy) larvae. Aquaculture, 510, 160-168.

Prakoso, V. A., Pouil, S., Cahyanti, W., Sundari, S., Arifin, O. Z., Subagja, J., Kristanto, A. H., & Slembrouck, J. (2021). Fluctuating temperature regime impairs growth in giant gourami (Osphronemus goramy) larvae. Aquaculture, 539, 736606.

Prakoso, V. A., Sinansari, S., & Kristanto, A. H. (2018). Oxygen consumption and blood glucose level of Asian redtail catfish (Hemibagrus nemurus) fingerlings exposed to hypoxia. In The Proceeding of 4th International Biology Conference–2018 (p. 54-59).

Pyanuth, R., Sommai, C., & Naraid, S. (2020). Effects of temperature on growth performance and water quality in culture system of butter catfish (Ompok bimaculatus). Songklanakarin Journal of Sciience and Technology 42, 1253-1258.

Rao, M. R. K., Devi, M., Hussain, A. J., Bora, R., Kumar, K., & Jayaprakashvel, M. (2014). Effect of environmental stresses on lipid and and haematological profiles of the air breathing catfish Clarias batrachus (Linn.). American Journal of PharmTech Research, 4(5).

Rees, B. B., & Matute, L. A. (2018). Repeatable interindividual variation in hypoxia tolerance in the gulf killifish, Fundulus grandis. Physiological and Biochemical Zoology, 91, 1046-1056.

Rogers, N. J., Urbina, M. A., Reardon, E. E., McKenzie, D. J., & Wilson, R. W. (2016). A new analysis of hypoxia tolerance in fishes using a database of critical oxygen level (P crit). Conservation Physiology, 4, cow012.

Schafer, N., Matousek, J., Rebl, A., Stejskal, V., Brunner, R. M., Goldammer, T., Verleih, M., & Korytar, T. (2021). Effects of chronic hypoxia on the immune status of pikeperch (Sander lucioperca Linnaeus, 1758). Biology (Basel) 10.

Silkin, Y. A., & Silkina, E. N. (2005). Effect of hypoxia on physiological biochemical blood parameters in some marine fish. Journal of Evolutionary Biochemistry and Physiology, 41, 527—532.

Subagja, J., Cahyanti, W., Nafiqoh, N., & Arifin, O. Z. (2015). Bioreproductive performance and the growth of three populations of Asian redtail catfish (Hemibagrus nemurus). Jurnal Riset Akuakultur, 10, 25-32.

Svobodova, Z., Lloyd, R., Machova, J., & Vykusova, B. (1993). Water quality and fish health. EIFAC TEch. Pap. No. 54, Rome, FAO. 59 p.

Syawal, H., Kusumorini, N., Manalu, W., & Affandi, R. (2011). Respons fisiologis dan hematologis ikan mas (Cyprinus carpio) pada suhu media pemeliharaan yang berbeda. Jurnal Iktiologi Indonesia, 12(1), 1-11.

Takasusuki, J., Fernandes, N., & Severi, W. (1998). The occurrence of aerial respiration in Rhinelepis strigosa during progressive hypoxia. Journal of Fish Biology, 52, 369–379.

Tripathi, R. K., Mohindra, V., Singh, A., Kumar, R., Mishra, R. M., & Jena, J. K. (2013). Physiological responses to acute experimental hypoxia in the air-breathing Indian catfish ¬¬(Linnaeus, 1758). Journal of Biosciences, 38, 373-383.

Urbina, M. A., Forster, M. E., & Glover, C. N. (2011). Leap of faith: voluntary emersion behaviour and physiological adaptations to aerial exposure in a non-aestivating freshwater fish in response to aquatic hypoxia. Physiology & Behavior, 103, 240-247.

Wang, M., Wu, F., Xie, S., & Zhang, L. (2021). Acute hypoxia and reoxygenation: Effect on oxidative stress and hypoxia signal transduction in the juvenile yellow catfish (Pelteobagrus fulvidraco). Aquaculture, 531, 735903.

Wu, C.-B., Liu, Z.-Y., Li, F.-G., Chen, J., Jiang, X.-Y., & Zou, S.-M. (2017). Gill remodeling in response to hypoxia and temperature occurs in the hypoxia sensitive blunt snout bream (Megalobrama amblycephala). Aquaculture, 479, 479-486.

Yang, H., Cao, Z.-D., & Fu, S.-J. (2013). The effects of diel-cycling hypoxia acclimation on the hypoxia tolerance, swimming capacity and growth performance of southern catfish (Silurus meridionalis). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 165, 131-138.




DOI: http://dx.doi.org/10.15578/iaj.18.1.2023.53-60

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Creative Commons License
Indonesian Aquaculture Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats
p-ISSN: 0215-0883
e-ISSN: 2502-6577

 

Hasil gambar untuk isjd