Effectiveness of endophytic bacteria for some medicinal plants as probiotics for Nile tilapia (Oreochromis niloticus)

Sayeda Ali, Eman Yones, Hassan El-badry

Abstract


The main objective of this research is to study the possibility of using endophytic bacteria isolated from some medicinal plants (onion, Allium cepa, brassicales, Salvadora persica, and fenugreek, Trigonella foenum-graecum) as probiotics for Nile tilapia (Oreochromis niloticus). Fish growth was evaluated using fish growth performance indices and approximate fish composition. Fish health was assessed by quantifying some biochemical compounds in fish serum, and at the end of the experiment, a challenge test was performed with Vibrio parahaemolyticus. The use of endophytic bacteria increased all indicators of growth performance compared to the control group. Endophytic bacteria of Fenugreek recorded higher growth performance than other plants. Moreover, in all treatments except for onion, bacteria mixed with feed significantly increased in fish growth performance compared to bacteria added to rearing water. Endophytic bacteria of onion and fenugreek recorded higher concentrations of protein in muscles than the control group by 56 and 49%, respectively. Furthermore, 88, 75 and 63% of the treatments recorded a decrease in albumin, ALT and AST concentration compared to the control group. Although the concentration of urea in the blood was higher than the control group by about 7.4 to 44.3%, but the challenge test showed that all treatments had a 20% mortality rate compared to the control group (10%). As a result, the endophytic bacteria of onion, brassicales and fenugreek can be used as probiotics for Nile tilapia. Further study is needed to elucidate the optimal bacterial concentration necessary for tilapia growth.


Keywords


Endophytic bacteria; Probiotic bacteria; Medicinal plants; Nile tilapia

Full Text:

PDF

References


Abbas, W.T., Abumourad, I.M.K., Mohamed, L.A., Abbas, H.H., Authman, M.M.N., Soliman, W.S.E., & Elgendy, M.Y. (2019). The Role of the Dietary Supplementation of Fenugreek Seeds in Growth and Immunity in Nile Tilapia with or without Cadmium Contamination. Jordan Journal of Biological Sciences 12 (5): 649 – 656

Acun˜a, J.J., Jorquera, M.A., Martı´nez, O.A., Menezes-Blackburn, D., Ferna´ndez, M.T., Marschner, P., et al. (2011). Indole acetic acid and phytase activity produced by rhizosphere bacilli as affected by pH and metals. J Soil Sci Plant Nutr 11:1-12.

Ali, S.M., Aboseif, A.M., El-Gamal, A.D., & El-hammady, A.K. (2022). Microbial biomass production using sugarcane industrial by-products and their application to Nile tilapia aquaculture. Research Journal of Biotechnology 17 (5).

Ali, S.M., Mohamed, I.A.W., & Abbas, W.T. (2011). Evaluation of Azotobacter and Azospirillum biofertilizers as a probiotics in Oreochromis niloticus aquaculture. Journal of Fisheries and Aquatic Science 6(5): 535-544.

AOAC (2019) Official Methods of Analysis of the Association of Official Analytical Chemists: Official Methods of Analysis of AOAC International. 21st Edition, AOAC, Washington DC.

Atlas, R.M. (1946). Handbook of Microbiological Media 3rd (Boca Raton, London, New York, Washington, D.C.: CRC Press), pp. 914.

Eissa, E.H., Baghdady, E.S., Gaafar, A.Y., El-Badawi, A.A., Bazina, W.K., Abd Al-Kareem, O.M., & Abd El-Hamed, N.N.B. (2022). Assessing the influence of dietary Pediococcus acidilactici probiotics supplementation in the feed of European sea bass (Dicentrarchus labrax, L.) (Linnaeus, 1758) on farm water quality, growth, feed utilization, survival rate, body composition, blood biochemicalparameters, and intestinal histology. Aquaculture Nutrition 1–11.

Ek-Ramos, M.J., Gomez-Flores, R., Orozco-Flores, A.A., Rodriguez-Padilla, C., Gonzalez-Ochoa, G., & Tamez-Guerra, P. (2019). Bioactive products from plant-endophytic gram-positive bacteria. Front.Microbiol. 10:463. doi:10.3389/fmicb.2019.00463 cited from Wu et al. 2021

Elmagzob, A.A.H., Ibrahim, M.M., Zhang, G. (2019). Seasonal Diversity of Endophytic Bacteria Associated with Cinnamomum camphora (L.) Presl. Diversity 11(112): 1-15. doi:10.3390/d11070112

Gatesoupe, F. (2008). Updating the Importance of Lactic Acid Bacteria in Fish Farming: Natural Occurrence and Probiotic Treatments. Journal of Molecular Microbiology and Biotechnology 14(1-3): 107–114. doi:10.1159/000106089

Hassan, S.E. (2017). Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. Journal of Advanced Research 8: 687–695.

Hedayati, S.A., Sheikh, V.R., Hosseini, S.S.P., Shahbazi, N.S., Bagheri, D., & Ghafarifarsani, H. (2021). Effect of dietary Lactobacillus casei on physiometabolic responses and liver histopathology in common carp (Cyprinus carpio) after exposure to iron oxide nanoparticles. Biol. Trace Elem. Res. 30: 1–9.

Joshi, J., Srisala, J., Truong, V.H., Chen, I.T., Nuangsaeng, B., Suthienkul, O., Lo, C.F., Flegel, T.W., Sritunyalucksana, K., & Thitamadee, S. (2014). Variation in Vibrio parahaemolyticus isolates from a single Thai shrimp farm experiencing an outbreak of acute hepatopancreatic necrosis disease (AHPND). Aquaculture 428 (429): 297–302. doi:10.1016/j.aquaculture.2014.03.030

Julinta, R.B., Abraham, T.J., Roy, A., Singha, J., Boda, S., Patil, P.K. (2019). Dietary influences of oxytetracycline on the growth and serum biomarkers of Oreochromis niloticus (L.). Ecotoxicology and Environmental Safety 186, 109752. doi:10.1016/j.ecoenv.2019.109752

Kazuń, B., Małaczewska, J., Kazuń, K., Żylińska-Urban, J., & Siwicki, A.K. (2018). Immune-enhancing activity of potential probiotic strains of Lactobacillus plantarum in the common carp (Cyprinus carpio) fingerling. Journal of Veterinary Research 62(4): 485–492. doi:10.2478/jvetres-2018-0062

Li, Q., Jiang, B., Zhang, Z., Huang, Y., Xu, Z., Chen, X., Cai, J., Huang, Y., & Jian, J. (2022). CRP Involved in Nile Tilapia (Oreochromis niloticus) against Bacterial Infection. Biology 11(8), 1149; https://doi.org/10.3390/biology11081149

Mekky, N., Sadek, K., Soliman, M., & Khalil, R. (2020). Biochemical alterations in serum biomarkers of Nile tilapia Oreochromis Niloticus exposed to sodium fluoride and Moringa oleifera. Damanhour Journal of Veterinary Sciences 3 (2): 6-11.

Mitter, B., Brader, G., Afzal, M., Compant, S., Naveed, M., Trognitz, F., et al. (2013). Advances in elucidating beneficial interactions between plants, soil, and bacteria. Adv. Agron. 121, 381–445. doi: 10.1016/B978-0-12-407685-3.00007-4

cited from Wu et al. 2021

Oluwalola, O.I., Fagbenro, O.A. & Adebayo, O.T. (2020). Haematological and serum biochemical profiles of Nile tilapia, Oreochromis niloticus from different culture enclosures. International Journal of Fisheries and Aquatic Studies 8(3): 489-493

Opiyo, M.A., Jumbe, J., Ngugi, C.C., & Charo-Karisa, H. (2019). Different levels of probiotics affect growth, survival and body composition of Nile tilapia (Oreochromis niloticus) cultured in low input ponds. Scientific African 4, e00103. doi:10.1016/j.sciaf.2019.e00103

Priestley, S.M., Stevenson, A.E., Alexander, L.G. (2006). Growth rate and body condition in relation to group size in black widow tetras (Gymnocorymbus ternetzi) and common goldfish (Carassiusauratus). J. Nutr. 136: 2078S-2080S.

Rahman, A., Shefat, S.H.T., Chowdhury, M.A., & Khan, S.U. (2021). Effects of Probiotic Bacillus on Growth Performance, Immune Response and Disease Resistance in Aquaculture. Journal of Aquaculture Research & Development 12 (4): 634.

Ricker, W.E. (1975). Computation and interpretation of biological statistics of fish populations. Bulletin of the Fisheries Research Board of Canada 191, 382

Tadese, D.A., Song, C., Sun, C., Liu, B., Liu, B., Zhou, Q.,

Xu, P., Ge, X., Liu, M., Xu, X., Tamiru, M., Zhou, Z., Lakew, A., & Kevin, N.T. (2022): The role of currently used medicinal plants in aquaculture and their action mechanisms: A review. Reviews in Aquaculture 14: 816–847. https://doi.org/10.1111/raq.12626

Tripathy, P.P., & Ayyappan, S. (2005). Evaluation of Azotobacter and Azospirillum as biofertilizers in aquaculture. World J. Microbial. Biotechnol. 21: 1339-1343.

Verschuere, L., Rombaut, G., Sorgeloos, P., & Verstraete, W. (2000). Probiotic Bacteria as Biological Control Agents in Aquaculture. Microbiology and Molecular Biology Reviews 64(4), 655–671. doi:10.1128/mmbr.64.4.655-671.2000

Wu, W., Chen, W., Liu, S., Wu, J., Zhu, Y., Qin, L., & Zhu, B. (2021). Beneficial Relationships Between Endophytic Bacteria and Medicinal Plants. Front. Plant Sci. 12:646146. doi: 10.3389/fpls.2021.646146

Youssef, H.H., Fayez, M., Monib, M., & Hegazi, N. A. (2004). Gluconacetobacter diazotrophicus: a natural endophytic diazotroph of Nile Delta sugarcane capable of establishing an endophytic association with wheat. Boil Fert Soils 6:391–7

Zokaeifar, H., Babaei, N., Saad, C.R., Kamarudin, M.S., Sijam, K., & Balcazar, J.L. (2014). Administration of Bacillus subtilis strains in the rearing water enhances the water quality, growth performance, immune response, and resistance against Vibrio harveyi infection in juvenile white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology 36(1): 68–74. doi:10.1016/j.fsi.2013.10.007




DOI: http://dx.doi.org/10.15578/iaj.18.2.2023.87-95

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Creative Commons License
Indonesian Aquaculture Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats
p-ISSN: 0215-0883
e-ISSN: 2502-6577

 

Hasil gambar untuk isjd