SAND CRAB (Emerita sp.) MEAL AS A NOVEL FEED INGREDIENT FOR KOI CARP (Cyprinus carpio)

Sukarman Sukarman, Siti Murniasih, Rendy Gynanjar, Rina Hirnawati, Mochammad Zamroni, Lili Solichah, Nina Meilisza, Megarizka Aulia, Ratna Komala

Abstract


Sand crab (Emerita sp.) is a marine biodiversity, but it has not been used as a fish feed ingredient. This study aimed to evaluate the nutritional value of sand crabs and to understand its effect when used as feed ingredient on the performance of Koi carp. The study was conducted in two steps, which is evaluation of the nutritional value of sand crab and its effect on fish performance. The proximate composition, amino acids, and fatty acids were measured using AOAC methods, and then the carotenoid content was determined by spectrophotometry. In the second step, the sand crab was added to fish feed at doses of 0, 5, 10, and 15 percent, and fed to koi fish for 42 days. The parameters observed were length gain (LG), weight gain (WG), and feed efficiency (FE). Nutritional data were analyzed by description and compared with fish feed ingredients from previous studies. Fish performance were analyzed by one-way ANOVA. When significant, Tukey’s significant mean test was applied. The result showed that the nutritional value of sand crab was comparable to other feed ingredients with a protein content of 37.88%, while carotenoid content was superior. The best performance of Koi carp was obtained with a dose of 15% sand crab in the diet, with LG, WG, and FE values of 0.93 ± 0.05 cm, 0.48 ± 0.06 g, and 63.50 ± 7.05 %, respectively. Based on this result, it can be concluded that sand crab has a high nutritional value and can be used up to 15% in Koi carp diet.


Keywords


Emerita; nutritional; Cyprinus; feed

Full Text:

PDF

References


Abraha, B., Admassu, H., Mahmud, A., Tsighe, N., Shui, X. W., & Fang, Y. (2018). Effect of processing methods on nutritional and physico-chemical composition of fish: a review. MOJ Food Processing & Technology, 6(4), 376–382. https://doi.org/10.15406/mojfpt.2018.06.00191

Adarme-Vega, T. C., Thomas-Hall, S. R., & Schenk, P. M. (2014). Towards sustainable sources for omega-3 fatty acids production. Current Opinion in Biotechnology, 26, 14–18. https://doi.org/10.1016/j.copbio.2013.08.003

Akonor, P. T., Ofori, H., Dziedzoave, N. T., & Kortei, N. K. (2016). Drying characteristics and physical and nutritional properties of shrimp meat as affected by different traditional drying techniques. International Journal of Food Science, 1–5. https://doi.org/https://doi.org/10.1155/2016/7879097

AOAC. (2005). Official Methods of Analysis (16th ed.). Association of Official Analytical Chemists.

Apte, S. K. (2012). Impact assessment on the aquatic ecosystem in the vicinity of an operating nuclear power plant at the Kalpakkam Coastal Site. In Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 349–355. https://doi.org/10.1007/s40011-012-0103-4

Astriana, Y. (2013). Increase in egg yolk colour intensity and omega-3 levels in quails fed with sand crab (Emerita sp). Undergraduate Thesis. University of Semarang. https://lib.unnes.ac.id/20193/

Balzano, M., Pacetti, D., Lucci, P., Fiorini, D., & Frega, N. G. (2017). Bioactive fatty acids in mantis shrimp, crab and caramote prawn: Their content and distribution among the main lipid classes. Journal of Food Composition and Analysis, 59, 88–94. https://doi.org/10.1016/j.jfca.2017.01.013

Basch, E., Bent, S., Collins, J., Dacey, C., Ulbricht, C., Vora, M., & Weissner, W. (2007). Flax and flaxeed oil (Linum usitatissimum) : a review by the natural standard research collaboration. Journal of the Society for Integrative Oncology, 5(3), 92–105.

Bhagawati, D., Anggoro, S., Zainuri, M., & Sya’rani, L. (2016). Taxonomic contribution to species utilisation: study of morphological characteristics and key dichotomies of the Yutuk crab (Crustacea: Hippoidea) from the Cilacap coast. In Proceedings of the 5th National Annual Seminar, Results of Fisheries and Marine Science (Pp 550-564), Diponegoro University.

Bhagawati, D., Nuryanto, A., Winarni, E. T., & Pulungsari, A. E. (2022). Morphological and molecular characterization of mole crab (Genus: Emerita) in the Cilacap coastlines of Indonesia, with particular focus on genetic diversity of Emerita sp. Biodiversitas, 23(5), 2395–2404. https://doi.org/10.13057/biodiv/d230517

Batoro, J. (2008). Omega 3 Eggs. http//www.malangkab.go.id./artikel/artikel.cfm.

Borić, M., Vicente, F. A., Jurković, D. L., Novak, U., & Likozar, B. (2020). Chitin isolation from crustacean waste using a hybrid demineralization/DBD plasma process. Carbohydrate Polimers, 246 (2020), 116648.

Boyko, C. B. (2002). A worldwide revision of the recent and fossil sand crabs of the Albuneidae stimpson and Blepharipodidae, new family (Crustacea: Decapoda: Anomura: Hippoidea). Bulletin of the American Museum of Natural History, 272, 3–392.

Boyko, C. B., & Harvey, A. W. (1999). Crustacea Decapoda: Albuneidae and Hippidae of the tropical Indo-West Pacific region. Mémoires Du Muséum National d’Histoire Naturelle, 20(180), 379–406.

Chen, Y. C., Tou, J. C., & Jaczynski, J. (2009). Amino acid and mineral composition of protein and other components and their recovery yields from whole antarctic krill (Euphausia superba) using isoelectric solubilization/precipitation. Journal of Food Science, 74(2),31–39. https://doi.org/10.1111/j.1750-3841.2008.01026.x

Choubert, G. (2010). Response of rainbow trout (Oncorhynchus mykiss) to varying dietary astaxanthin/canthaxanthin ratio: colour and carotenoid retention of the muscle. Aquaculture Nutrition, 16(5), 528–535. https://doi.org/10.1111/j.1365-2095.2009.00692.x

Chukwu, O., & Shaba, I. M. (2009). Effects of drying methods on proximate compositions of catfish (Clarias gariepinus). World Journal of Agricultural Sciences, 5(1), 114–116.

Contancio, L. F. (2011). Effects of season, size and parasitism by the acanthocephalan, profilicollis altmani, on the carotenoid concentration and composition of the pacific mole crab, Emerita analoga. M.Sc.Thesis. Faculty of California Polytechnic State University.

Davis, D. A., & Gatlin, D. M. (1996). Dietary mineral requirements of fish and marine crustaceans. Reviews in Fisheries Science, 4(1), 75–99.

Davis, D. A., & Lawerence, A. I. (1997). Minerals. In L. R. D’Abramo, D. E. Conklin, & D. M. Akiyama (Eds.), Crustacean Nutrition (pp. 150–159).

Efford, I. E. (1976). Distribution of the sand crabs in the genus Emerita (Decapoda, Hippidae). Crustaceana, 30(1), 169–183.

García-Romero, J., Ginés, R., Izquierdo, M., & Robaina, L. (2014a). Marine and freshwater crab meals in diets for Red porgy (Pagrus pagrus): effect on fillet fatty acid profile and flesh quality parameters. Aquaculture, 420–421(2014), 231–239. https://doi.org/10.1016/j.aquaculture.2013.10.035

García-Romero, J., Ginés, R., Izquierdo, M. S., Haroun, R., Badilla, R., & Robaina, L. (2014b). Effect of dietary substitution of fish meal for marine crab and echinoderm meals on growth performance, ammonia excretion, skin colour, and flesh quality and oxidation of Red porgy (Pagrus pagrus). Aquaculture, 422–423(2014), 239–248. https://doi.org/10.1016/j.aquaculture.2013.11.024

Gilchirst, B. M., & Lee, W. L. (1972). Carotenoid pigments and their possible role in reproduction in the sand crab, Emerita analoga (Stimpson, 1857). Comp. Biochem. Pysiol, 42B, 263–294.

Giri, N., Suwirya, K., & Marzuqi, M. (2006). Dietary methionine requirement for growth of juvenile Humpback grouper (Cromileptes altivelis). Indonesian Aquaculture Journal, 1(2), 79–86.

Goytortúa-Bores, E., Civera-Cerecedo, R., Rocha-Meza, S., & Green-Yee, A. (2006). Partial replacement of red crab (Pleuroncodes planipes) meal for fish meal in practical diets for the white shrimp Litopenaeus vannamei. Effects on growth and in vivo digestibility. Aquaculture, 256 (1–4), 414–422. https://doi.org/10.1016/j.aquaculture.2006.02.035

Hairol, M. D., Nian, C. T., Imlani, A. H., Tikmasan, J. A., & Sarri, J. H. (2022). Effects of crab shell meal inclusions to fishmeal replacement on the survival, growth, and feed utilization of mangrove crab Scylla serrata (Forsskal 1775). Journal of Agricultural Sciences, 32(4), 714–726. https://doi.org/10.29133/yyutbd.1131220

Haley, S. R. (1982). Zonation by size of the pacific mole crab, Hippa pacifica dana (Crustacea:Anomura:Hippidae), in hawaii. Journal of Experimental Marine Biology and Ecology, 58(2–3), 221–231. https://doi.org/10.1016/0022-0981(82)90131-9

Haq, M., Irmansyah, Maddu, A., Riyanto, B., Wardiatno, Y., & Zakiah, A. F. N. (2018). Exploration of composition, elements, and microstructure of body and shell on tropical mole crab (Emerita emeritus). Conference Series: Earth and Environmental Science, 187(1), 0–9. https://doi.org/10.1088/1755-1315/187/1/012021

Haye, P. A., Tam, Y. K., & Kornfield, I. (2002). Molecular phylogenetics of Mole crabs (Hippidae: Emerita). Journal of Crustacean Biology, 22(4), 903–915.

Helliwell, J. R. (2010). The structural chemistry and structural biology of colouration in marine crustacea. Crystallography Reviews, 16(3), 231–242. https://doi.org/10.1080/08893111003747084

Hertrampf, J. W., & Piedad-Pascual, L. (2000). Handbook on Ingredient for Aquaculture Feeds. Kluwer Academic Publishers, London.

Hodar, A. R., Vasava, R., Joshi, N. H., & Mahavadiya, D. R. (2020). Fish meal and fish oil replacement for alternative sources: a review. Journal of Experimental Zoology India, 23(January), 13–21. https://www.thepharmajournal.com/archives/2021/vol10issue9/PartI/10-8-322-305.pdf

Hu, E., Wang, R. J., Pan, C. Y., & Yang, W. X. (2009). Fatty acids: composition and functions for reproduction. Aquaculture Research Progress, May, 127–146.

Jia, S., Li, X., He, W., & Wu, G. (2022). Protein-sourced feedstuffs for aquatic animals in nutrition research and aquaculture. In Advances in Experimental Medicine and Biology, 1354, 237-261. https://doi.org/10.1007/978-3-030-85686-1_12

Kardaya, D., Ralahalu, T. N., Zubir, Purba, M., & Parakkasi, A. (2011). Test on Emerita analoga as cholesterol reducing agent on Mus musculus BALB/C. JITP, 1(2), 74–87.

Keremah, R. I. (2013). The effects of replacement of fish-meal with crab-meal on growth and feed utilization of African giant catfish Heterobranchus longifilis fingerlings. International Journal of Fisheries and Aquaculture, 5(4), 60–65. https://doi.org/10.5897/IJFA2013.0332

Ketaren, C. B. B., Hakim, A. A., Fahrudin, A., & Wardiyatno, Y. (2019). The concentration of the heavy metal lead (Pb) in sand crabs and its impact on human health. Journal of Biology Topic, 19(1), 90–100. https://doi.org/10.29303/jbt.v19i1.1066

Kumari, S., Rath, P., Sri Hari Kumar, A., & Tiwari, T. N. (2015). Extraction and characterization of chitin and chitosan from fishery waste by chemical method. Environmental Technology and Innovation, 3, 77–85. https://doi.org/10.1016/j.eti.2015.01.002

Kuo, H. C., Lee, T. C., Kamata, T., & Simpson, K. L. (1976). Red crab processing waste as a carotenoid source for rainbow trout. Alimenta, 15, 47–51.

Lall, S. P., & Kaushik, S. J. (2021). Nutrition and metabolism of minerals in fish. Animals, 11(9), 1–41. https://doi.org/10.3390/ani11092711

Landymore, C., Durance, T. D., Singh, A., Singh, A. P., & Kitts, D. D. (2019). Comparing different dehydration methods on protein quality of krill (Euphausia Pacifica). Food Research International, 119, 276–282. https://doi.org/10.1016/j.foodres.2018.12.001

Li, X., Zheng, S., & Wu, G. (2021). Nutrition and functions of amino acids in fish. In Advances in Experimental Medicine and Biology, 1285, 133-168. https://doi.org/10.1007/978-3-030-54462-1_8

Liu, Y., Liu, Y. N., Tian, X. C., Liu, H. P., Wen, B., Wang, N., Gao, J. Z., & Chen, Z. Z. (2021). Growth and tissue calcium and phosphorus deposition of juvenile discus fish (Symphysodon haraldi) fed with graded levels of calcium and phosphorus. Aquaculture, 541, 1–7. https://doi.org/10.1016/j.aquaculture.2021.736755

Manikandan, K., Felix, N., & Prabu, E. (2020). A review on the application and effect of carotenoids with respect to canthaxanthin in the culture of fishes and crustaceans. International Journal of Fisheries and Aquatic Studies, 8(5), 128–133. https://doi.org/10.22271/fish.2020.v8.i5b.2314

Mantelatto, F. L., Paixão, J. M., Robles, R., Teles, J. N., & Balbino, F. C. (2023). Evidence using morphology, molecules, and biogeography clarifies the taxonomic status of mole crabs of the genus Emerita scopoli, 1777 (Anomura, Hippidae) and reveals a new species from the western Atlantic. ZooKeys, 2023(1161), 169–202. https://doi.org/10.3897/zookeys.1161.99432

Mashar, A., Wardiatno, Y., Boer, M., Butet, N. A., & Farajallah, A. (2014). Diversity and abundance of sand crabs on the south coast of Central Java. Indonesian Journal of Marine Sciences, 19(4), 226–232. https://doi.org/10.14710/ik.ijms.19.4.226-232

Meyer, S. P., & Latscha, T. (1997). Carotenoids. In L. R. D’Abramo, D. E. Conklin, & D. M. Akiyama (Eds.), Crustacean Nutrition (pp. 164–193). Advance in World Aquaculture, Vol 6. Baton Rouge: World Aquaculture Society.

Mohamad-Zuki, N. A., Redhwan, A. I., Rashid, Z. M., Zalilawati, M. R., Siew, I. N., Assis, K., Rex, F. M. T., & Komilus, C. F. (2022). Crustacean shell waste as a potential feed material. Bioscience Research, 19(SI-1), 360–372. http://www.isisn.org/BR-19-SI-1-2022/360-372-35-BR-SI-FBIM-2022-Mohamad-Zuki.pdf

Mohan, K., Muralisankar, T., Jayakumar, R., & Rajeevgandhi, C. (2021). A study on structural comparisons of α-chitin extracted from marine crustacean shell waste. Carbohydrate Polymer Technologies and Applications, 2, 100037. https://doi.org/10.1016/j.carpta.2021.100037

Mukhtar, B., Malik, M., Shah, S., Azzam, A., Slahuddin, & Liaqat, I. (2017). Lysine supplementation in fish feed. Journal of Applied Biology and Forensics, 1(2), 26–31.

Mursyidin, D.H. (2007). Omega-6 fatty acid content of sand crabs (Emerita spp.) on the south coast of Yogyakarta. Bioscientiae, 4(2), 79–84.

Mursyidin, D.H., Muhammad, S., Perkasa, D., Sekendriana, & Prabowo. (2002). Evaluation of the omega-3 fatty acid content of sand crab (Emerita sp.) from the south coast of Yogyakarta. Taken from the Internal report of the Student Creativity Programme (PKM) of Gadjah Mada University, funded by the Directorate General of Higher Education.

Nagabhushanam, R., & Kulkarni, K. M. (1977). Seasonal changes in biochemical cof the sand crab Emerita holthuisi sankolli (Decapoda anomura). Monitore Zoologico Italiano - Italian Journal of Zoology, 11, 57–64. https://doi.org/10.1080/00269786.1977.10736290

NRC. (2011). Nutrient Requirements of Fish and Shrimp. The National Academies Press. https://doi.org/10.1007/s10499-011-9480-6

Pan, C., Liang, X., Chen, S., Tao, F., Yang, X., & Cen, J. (2020). Red color-related proteins from the shell of red swamp crayfish (Procambarus clarkii): isolation, identification and bioinformatic analysis. Food Chemistry, 327(2020), 127079. https://doi.org/10.1016/j.foodchem.2020.127079

Paul, M., Sardar, P., Sahu, N. P., Varghese, T., Shamna, N., Harikrishna, V., Deo, A. D., Jana, P., Singha, K. P., Gupta, G., Kumar, M., & Krishna, G. (2019). Optimal dietary protein requirement of juvenile GIFT tilapia (Oreochromis niloticus) reared in inland groud saline water. Journal of Enviromental Biology, 43, 205–215.

Pérez, D. (1999). Mercury levels in mole crabs Hippa cubensis, Emerita brasiliensis, E. portoricensis, and Lepidopa richmondi (Crustacea: Decapoda: Hippidae) from a sandy beach at Venezuela. Bulletin of Environmental Contamination and Toxicology, 63(3), 320–326. https://doi.org/10.1007/s001289900983

Prabhu, A. J., Schrama, J. W., & Kaushik, S. J. (2016). Mineral requirements of fish: A systematic review. Reviews in Aquaculture, 8(2), 172–219. https://doi.org/10.1111/raq.12090

Pratiwi, I. (2016). The effect of commercial feed substitution with mole crab (Emerita sp.) meal toward the body weight of male quail (Coturnix coturnix japonica l). Jurnal of Biology, 5(3), 1–8.

Purba, M., Putriningtias, A., & Komariyah, S. (2020). Addition of β-carotene natural flour sources in feed on improvement of color brightness and growth of koi (Cyprinus carpio). Journal of Akuakultura, 4(2), 10. https://doi.org/10.35308/ja.v4i2.3454

Ringø, E., Zhou, Z., Olsen, R. E., & Song, S. K. (2012). Use of chitin and krill in aquaculture - the effect on gut microbiota and the immune system: A review. Aquaculture Nutrition, 18(2), 117–131. https://doi.org/10.1111/j.1365-2095.2011.00919.x

Santoso, J., Hanifa, Y. N., Indariani, S., Wardiatno, Y., & Mashar, A. (2015). Nutritional values of the Indonesian mole crab, Emerita emeritus: are they affected by processing methods? AACL Bioflux, 8(4), 579–587.

Schwarz, F. J., Kirchgessner, M., & Deuringer, U. (1998). Studies on the methionine requirement of carp (Cyprinus carpio L.). Aquaculture, 161(1–4), 121–129. https://doi.org/10.1016/S0044-8486(97)00262-7

Simpson, K. L., Katayama, T., & Chichester, C. O. (1981). Carotenoids in fish feeds. In Carotenoids as Colorants and Vitamin A Precursors. (Ed. by JC Bauernfeind). Academic Press Inc, USA.

Sukarman, Ginanjar, R., Zamroni, M., Ardi, I., Musa, A., Rini Fahmi, M., Priyadi, A., & Yamin, M. (2023). Effect of different enriched crickets (Gryllus sigilatus) on growth and pigmentation of Asian arowana (Scleropages formosus) Var. super red. HAYATI Journal of Biosciences, 30(2), 392–403. https://doi.org/10.4308/hjb.30.2.392-403

Teles, A. O., & Couto, A. (2019). Dietary protein requirements of fish – a meta - analysis. Reviws in Aquaculture, 1–33. https://doi.org/10.1111/raq.12391

Tacon, A. G. J., & Metian, M. (2008). Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 285(1–4), 146–158. https://doi.org/10.1016/j.aquaculture.2008.08.015

Tocher, D. R. (2003). Metabolism and functions of lipids and fatty acids in teleost fish. Reviews in Fisheries Science, 11(2), 107–184. https://doi.org/10.1080/713610925

Vijayalingam, T. A., & Rajesh, N. V. (2020). Analysis of nutritional value of crab meal as feed supplement for livestock and poultry. Chemical Science Review and Letters, 9(35), 773–776. https://doi.org/10.37273/chesci.CS205107195

Wang, Y., Zhang, M., & Mujumdar, A. S. (2011). Trends in processing technologies for dried aquatic products. Drying Technology, 29(4), 382–394. https://doi.org/10.1080/07373937.2011.551624

Wardiatno, Y., Ardika, P. U., Farajallah, A., Butet, N. A., Mashar, A., Kamal, M. M., Renjaan, E. A., & Sorang, M. . (2015). Biodeversity of Indonesian sand crab (Crustacea, Anomura, Hippidae) and assessment of their phylogenetic relationships. AACL Bioflux, 8(2), 224–235. https://doi.org/10.1163/9789004387584_011

Wardiatno, Y., Nurjana, I. W., & Mashar, A. (2014). Habitat characteristics of the sand crabs (Family Hippidae) in sandy coast of Cilacap District. Jurnal Biologi Tropis, 14(1), 1–8. https://doi.org/10.29303/jbt.v14i1.1947

Winarti, W., Subandiyono, S., & Sudaryono, A. (2017). Use of fermented Lemna Sp. meal in artificial diets for the growth of carp fish (Cyprinus carpio). Journal of Science Aquaculture Technology, 1(2), 88–94.

Wittriansyah, K., Handayani, M., & Dirgantara, D. (2018). Characterization of chitin and chitosan Emerita Sp. from Widarapayung coast, Cilacap, Central Java. Jurnal Ilmiah Samudra Akuatika, 2(1), 45–51.

Wu, T., & Mao, L. (2008). Influences of hot air drying and microwave drying on nutritional and odorous properties of grass carp (Ctenopharyngodon idellus) fillets. Food Chemistry, 110(3), 647–653. https://doi.org/10.1016/j.foodchem.2008.02.058

Yi, X., Li, J., Xu, W., Zhou, H., Smith, A. A., Zhang, W., & Mai, K. (2015). Shrimp shell meal in diets for large yellow croaker Larimichthys croceus: effects on growth, body composition, skin coloration and anti-oxidative capacity. Aquaculture, 441, 45–50. https://doi.org/10.1016/j.aquaculture.2015.01.030

Zhou, X. Q., Zhao, C. R., Jiang, J., Feng, L., & Liu, Y. (2008). Dietary lysine requirement of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture Nutrition, 14(5), 381–386. https://doi.org/10.1111/j.1365-2095.2007.00535.x




DOI: http://dx.doi.org/10.15578/iaj.18.2.2023.155-167

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Creative Commons License
Indonesian Aquaculture Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats
p-ISSN: 0215-0883
e-ISSN: 2502-6577

 

Hasil gambar untuk isjd