A STUDY ON AQUAPONIC CULTIVATION OF VANNAMEI SHRIMP (Litopenaeus vannamei) AND WATER SPINACH (Ipomoea aquatica Forsk) UNDER LOW SALINITY
Abstract
Keywords
Full Text:
PDFReferences
Alarcón-Silvas, S. G., León-Cañedo, J. A., Fierro-Sañudo, J. F., Ramírez-Rochín, J., Fregoso-López, M. G., Frías-Espericueta, M. G., Osuna-Martínez, C. C., & Páez-Osuna, F. (2021). Water quality, water usage, nutrient use efficiency and growth of shrimp Litopenaeus vannamei in an integrated aquaponic system with basil Ocimum basilicum. Aquaculture, 543(December 2020). https://doi.org/10.1016/j.aquaculture.2021.737023
Armenta-Bojórquez, A. D., Valenzuela-Castañeda, A. R., Fitzsimmons, K., López-Alvarez, E. S., Rodríguez-Quiroz, G., & Valenzuela-Quiñónez, W. (2021). Pacific white shrimp and tomato production using water effluents and salinity-tolerant grafted plants in an integrated aquaponic production system. Journal of Cleaner Production, 278. https://doi.org/10.1016/j.jclepro.2020.124064
Astuti, L. P., Hendrawan, A. luky S., & Krismono, K. (2018). Water quality management through the application of fish farming in floating net cages “Smart.” Jurnal Kebijakan Perikanan Indonesia, 10(2), 87. https://doi.org/10.15578/jkpi.10.2.2018.87-97
Barg, U. C. (1993). Guidelines for the promotion of environmental management of coastal aquaculture development (328th ed.). FAO FISHERIES TECHNICAL PAPER 328.
Chu, Y. T., & Brown, P. B. (2021). Evaluation of pacific whiteleg shrimp and three halophytic plants in marine aquaponic systems under three salinities. Sustainability (Switzerland), 13(1), 1–14. https://doi.org/10.3390/su13010269
Diatin, I., Shafruddin, D., Hude, N., Sholihah, M., & Mutsmir, I. (2021). Production performance and financial feasibility analysis of farming catfish (Clarias gariepinus) utilizing water exchange system, aquaponic, and biofloc technology. Journal of the Saudi Society of Agricultural Sciences, 20(5), 344–351. https://doi.org/10.1016/j.jssas.2021.04.001
Enduta, A., Jusoh, A., Ali, N., & Wan Nik, W. B. (2011). Nutrient removal from aquaculture wastewater by vegetable production in aquaponics recirculation system. Desalination and Water Treatment, 32(1–3), 422–430. https://doi.org/10.5004/dwt.2011.2761
Esparza-Leal, H. M., Valenzuela-Quiñónez, W., Ponce-Palafox, J. T., Beltrán, H. C., & Figueroa, J. L. A. (2009). The effect of low salinity water with different ionic composition on the growth and survival of litopenaeus vannamei (boone, 1931) in intensive culture. Journal of Applied Aquaculture, 21(4), 215–227. https://doi.org/10.1080/10454430903113958
Fierro-Sanudo, J. ., S.G, A.-S., J.G, L.-C., Gutierrez-Valenzuela J.G, J, R.-R., Mariscal-Lagarda M.M., F.-N. M. ., R, L.-J., Osuna-López, J. I., & F, P.-O. (2015). Integrated culture of shrimp ( Litopenaeus vannamei ), tomato ( Lycopersicon esculentum ) and lettuce (Lactuca sativa) using diluted seawater : management , production and water consumption. Global Advanced Research Journal of Agricultural Science, 4(7), 315–324.
Fierro-Sañudo, J. F., Rodríguez-Montes De Oca, G. A., León-Cañedo, J. A., Alarcón-Silvas, S. G., Martin Mariscal-Lagarda, M., Díaz-Valdés, T., & Federico Páez-Osuna, &. (2018). Production and management of shrimp-basil co-culture 63 Production and management of shrimp (Penaeus vannamei) in co-culture with basil (Ocimum basilicum) using two sources of low-salinity water. Lat. Am. J. Aquat. Res, 46(1), 63–71. https://doi.org/10.3856/vol46-issue1-fulltext-8
Goddek, S., Joyce, A., Wuertz, S., Körner, O., Bläser, I., Reuter, M., & Keesman, K. J. (2019). Decoupled Aquaponics Systems. In Aquaponics Food Production Systems. https://doi.org/10.1007/978-3-030-15943-6_8
Hu, Z., Lee, J. W., Chandran, K., Kim, S., & Khanal, S. K. (2012). Nitrous Oxide (N 2 O) Emission from Aquaculture: A Review. Environmental Science & Technology, 46(12), 6470–6480. https://doi.org/10.1021/es300110x
Jaffer, Y. D. D., Saraswathy, R., Ishfaq, M., Antony, J., Bundela, D. S. S., & Sharma, P. C. C. (2020). Effect of low salinity on the growth and survival of juvenile pacific white shrimp, Penaeus vannamei: A revival. Aquaculture, 515, 734561. https://doi.org/10.1016/j.aquaculture.2019.734561
Khairuddin, K., Sikanna, R., & Sabaruddin, S. (2017). Study of the ability of the roots of land kale plants (Ipomoea reptans poir) in absorbing mercury metal in polluted soil. KOVALEN, 3(3), 303–312. https://doi.org/10.22487/j24775398.2017.v3.i3.9340
Lennard, W. A., & Leonard, B. V. (2006). A Comparison of Three Different Hydroponic Sub-systems (gravel bed, floating and nutrient film technique) in an Aquaponic Test System. Aquaculture International, 14(6), 539–550. https://doi.org/10.1007/s10499-006-9053-2
Love, D. C., Fry, J. P., Li, X., Hill, E. S., Genello, L., Semmens, K., & Thompson, R. E. (2015). Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture, 435, 67–74. https://doi.org/10.1016/j.aquaculture.2014.09.023
Makmur, Asaad, A. I. J., & Rachmansyah. (2021). Small scale shrimp (Litopenaeus vannamei) nursery technology at high stocking density. IOP Conference Series: Earth and Environmental Science, 860(1). https://doi.org/10.1088/1755-1315/860/1/012025
Mariscal-Lagarda, M. M., Páez-Osuna, F., Esquer-Méndez, J. L., Guerrero-Monroy, I., del Vivar, A. R., & Félix-Gastelum, R. (2012). Integrated culture of white shrimp (Litopenaeus vannamei) and tomato (Lycopersicon esculentum Mill) with low salinity groundwater: Management and production. Aquaculture, 366–367, 76–84. https://doi.org/10.1016/j.aquaculture.2012.09.003
Miranda, F. R., Lima, R. N., Crisóstomo, L. A., & Santana, M. G. S. (2008). Reuse of inland low-salinity shrimp farm effluent for melon irrigation. Aquacultural Engineering, 39(1), 1–5. https://doi.org/10.1016/j.aquaeng.2008.04.001
Muqsith, A., Harahab, N., Mahmudi, M., & Fadjar, M. (2019). The estimation of loading feed nutrient waste from vannamei shrimp aquaculture pond and carrying capacity of coastal area in Banyuputih sub-district Situbondo Regency. AIP Conference Proceedings, 2120(1), 40037. https://doi.org/10.1063/1.5115675/1024740
Ni, M., Yuan, J., Hua, J., Lian, Q., Guo, A., Liu, M., Xin, J., Wang, H., & Gu, Z. (2020). Shrimp–vegetable rotational farming system: An innovation of shrimp aquaculture in the tidal flat ponds of Hangzhou Bay, China. Aquaculture, 518(June 2019), 734864. https://doi.org/10.1016/j.aquaculture.2019.734864
Ningsih, A., Mansyurdin, M., & Maideliza, T. (2016). Perkembangan Aerenkim Akar Kangkung Darat (Ipomoea Reptans Poir) dan Kangkung Air. Al-Kauniyah: Jurnal Biologi, 9(1), 37–43. https://doi.org/10.15408/kauniyah.v9i1.3356
Paena, M., Syamsuddin, R., Rani, C., & Tandipayuk, H. (2020). Estimasi Beban Limbah Organik Dari Tambak Udang Superintensif Yang Terbuang Di Perairan Teluk Labuange. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 12(2), 509–518. https://doi.org/10.29244/jitkt.v12i2.27738
Pantanella, E., Cardarelli, M., Colla, G., Rea, E., & Marcucci, A. (2012). Aquaponics vs. Hydroponics: Production and Quality of Lettuce Crop. Acta Horticulturae, 927, 887–894. https://doi.org/10.17660/actahortic.2012.927.109
Paudel, S. R., Luitel, S., Adhikari, R., Wagle, A., & You, K. (2019). Potential nitrous oxide (N 2 O) emission from aquaculture in Nepal. International Journal of Environmental Studies, 76(2), 318–328. https://doi.org/10.1080/00207233.2018.1560764
Rakocy, J. E., Masser, M. P., & Losordo, T. M. (2006). Recirculating aquaculture tank production systems: Aquaponics- integrating fish and plant culture. SRAC Publication - Southern Regional Aquaculture Center, 454, 16.
Raven, J. A. (1996). Into the voids: The distribution, function, development and maintenance of gas spaces in plants. Annals of Botany, 78(2), 137–142. https://doi.org/10.1006/anbo.1996.0105
Saab, I. N., & Sachs, M. M. (1996). A flooding-induced xyloglucan endo-transglycosylase homolog in maize is responsive to ethylene and associated with aerenchyma. Plant Physiology, 112(1), 385–391. https://doi.org/10.1104/pp.112.1.385
Samocha, T. M., Lawrence, A. L., & Pooser, D. (1998). Growth and survival of juvenile Penaeus vannamei in low salinity water in a semi-closed recirculating system. Israeli Journal of Aquaculture - Bamidgeh, 50(2), 55–59.
Saoud, I. P., Davis, D. A., & Rouse, D. B. (2003). Suitability studies of inland well waters for Litopenaeus vannamei culture. Aquaculture, 217(1–4), 373–383. https://doi.org/10.1016/S0044-8486(02)00418-0
Schardong, R. M. F., Moro, M. F., & Bonilla, O. H. (2020). Aquaponic System with White Shrimp Litopenaeus vannamei Rearing and Production of the Plants Batis maritima, Sarcocornia neei and Sporobolus virginicus. Brazilian Archives of Biology and Technology, 63, 2020. https://doi.org/10.1590/1678-4324-2020190118
Sunny, A. R., Islam, M. M., Rahman, M., Miah, M. Y., Mostafiz, M., Islam, N., Hossain, M. Z., Chowdhury, M. A., Islam, M. A., & Keus, H. J. (2019). Cost effective aquaponics for food security and income of farming households in coastal Bangladesh. Egyptian Journal of Aquatic Research, 45(1), 89–97. https://doi.org/10.1016/j.ejar.2019.01.003
Suroso, B., & Antoni, N. E. R. (2017). Respon Pertumbuhan Tanaman Kangkung Darat (Ipomoea reptans Poir) Terhadap Pupuk Bioboost dan Pupuk ZA. Agritrop : Jurnal Ilmu-Ilmu Pertanian (Journal of Agricultural Science), 14(1), 98–108. https://doi.org/10.32528/agr.v14i1.417
Syah, R., Fahrur, M., Suwoyo, H. S., & Makmur, M. (2017). Performansi Instalasi Pengolah Air Limbah Tambak Superintensif. Media Akuakultur, 12(2), 95. https://doi.org/10.15578/ma.12.2.2017.95-103
Syah, R., Makkmur, & Undu, M. C. (2014). Estimasi Beban Limbah Nutrien Pakan dan Daya Dukung Kawasan Pesisir Untuk Tambak Udang Vaname SuperIntensif. Jurnal Riset Akuakultur, 9(3), 439–448.
Syiam, R. N., Amalia, L., & Putri, D. I. (2021). Analysis of Differences in Shape, Size and Number of Stomata of Water Water Water (Ipomoea aquatica Forsskal) and Land Water (Ipomoea reptans Poir). Jurnal Life Science: Jurnal Pendidikan Dan Ilmu Pengetahuan Alam, 3(1), 12–18. https://doi.org/10.31980/jls.v3i1.1652
Tiro, L. La, Isa, I., & Iyabu, H. (2017). Potensi Tanaman Kangkung Air (Ipomoea Aquatica) Sebagai Bioabsorpsi Logam Pb dan Cu. Jurnal Entropi, 12(1), 81–86.
Wongkiew, S., Hu, Z., Chandran, K., Lee, J. W., & Khanal, S. K. (2017). Nitrogen transformations in aquaponic systems: A review. Aquacultural Engineering, 76, 9–19. https://doi.org/10.1016/j.aquaeng.2017.01.004
Yang, T., & Kim, H. J. (2019). Nutrient management regime affects water quality, crop growth, and nitrogen use efficiency of aquaponic systems. Scientia Horticulturae, 256(March), 108619. https://doi.org/10.1016/j.scienta.2019.108619.
Yousif, B. S., Nguyen, N. T., Fukuda, Y., Hakata, H., Okamoto, Y., Masaoka, Y., & Saneoka, H. (2010). Effect of salinity on growth, mineral composition, photosynthesis and water relations of two vegetable crops; New Zealand spinach (tetragonia tetragonioides) and water spinach (ipomoea aquatica). International Journal of Agriculture and Biology, 12(2), 211–216.
Zacharof, M. P., Mandale, S. J., Oatley-Radcliffe, D., & Lovitt, R. W. (2019). Nutrient recovery and fractionation of anaerobic digester effluents employing pilot scale membrane technology. Journal of Water Process Engineering, 31(June 2018), 1–10. https://doi.org/10.1016/j.jwpe.2019.100846
Zhou, L., Li, H., Qin, J. G., Wang, X., Chen, L., Xu, C., & Li, E. (2020). Dietary prebiotic inulin benefits on growth performance, antioxidant capacity, immune response and intestinal microbiota in Pacific white shrimp (Litopenaeus vannamei) at ow salinity. Aquaculture, 518(December 2019), 734847. https://doi.org/10.1016/j.aquaculture.2019.734847
Zhu, Z., Yogev, U., Goddek, S., Yang, F., Keesman, K. J., & Gross, A. (2022). Carbon dynamics and energy recovery in a novel near-zero waste aquaponics system with onsite anaerobic treatment. Science of the Total Environment, 833, 155245. https://doi.org/10.1016/j.scitotenv.2022.155245
DOI: http://dx.doi.org/10.15578/iaj.19.1.2024.57-73
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Aquaculture Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.