A STUDY ON AQUAPONIC CULTIVATION OF VANNAMEI SHRIMP (Litopenaeus vannamei) AND WATER SPINACH (Ipomoea aquatica Forsk) UNDER LOW SALINITY

Mat Fahrur, Dody Dharmawan Trijuno, Zainuddin Zainuddin, Muh Chaidir Undu, Makmur Makmur, Imam Taukhid, Rachman Syah

Abstract


Cultivation waste poses a severe threat to reducing environmental quality. However, the problem of low salinity cultivation waste can be overcome by converting it into plants. This research was conducted to assess the impact of salinity on the growth performance of Vannamei shrimp (Litopenaeus vannamei) and water spinach (Ipomoea aquatic Forsk) in a low-salinity aquaponic system. Floating raft system for planting water spinach. Furthermore, the role of water spinach in using N and P nutrients from the culture media of vannamei shrimp was analyzed. The experiment was carried out for 35 days, with two treatments and three repetitions, namely 5 and 10 ppt. Salinity affected the growth performance of shrimp and water spinach. Shrimp reared at 10 ppt exhibited higher growth rate, harvest size, and shrimp yield, along with lower feed conversion ratio (FCR) and water use compared to those reared at 5 ppt. Meanwhile, the performance of water spinach at 5 ppt salinity resulted in higher survival, plant height gain, root length gain, number of leaves, and yield of water spinach compared to 10 ppt salinity. The growth performance of water spinach decreased with increasing salinity, and the efficiency in reducing N and P from the 5 ppt culture media was 1.3 times higher than that of 10 ppt. Water spinach showed better results in the 5 ppt salinity media than 10 ppt, while vannamei shrimp grew at 5 ppt. Therefore, 5 ppt salinity was recommended as a suitable condition for integrated cultivation of vannamei shrimp and water spinach in low-salinity aquaponics. Both species were compatible and complemented each other’s role in developing low-salinity aquaponics.

Keywords


Aquaponics; aquaculture wastewater; low salinity; nutrient removal; shrimp vanname; water spinach.

Full Text:

PDF

References


Alarcón-Silvas, S. G., León-Cañedo, J. A., Fierro-Sañudo, J. F., Ramírez-Rochín, J., Fregoso-López, M. G., Frías-Espericueta, M. G., Osuna-Martínez, C. C., & Páez-Osuna, F. (2021). Water quality, water usage, nutrient use efficiency and growth of shrimp Litopenaeus vannamei in an integrated aquaponic system with basil Ocimum basilicum. Aquaculture, 543(December 2020). https://doi.org/10.1016/j.aquaculture.2021.737023

Armenta-Bojórquez, A. D., Valenzuela-Castañeda, A. R., Fitzsimmons, K., López-Alvarez, E. S., Rodríguez-Quiroz, G., & Valenzuela-Quiñónez, W. (2021). Pacific white shrimp and tomato production using water effluents and salinity-tolerant grafted plants in an integrated aquaponic production system. Journal of Cleaner Production, 278. https://doi.org/10.1016/j.jclepro.2020.124064

Astuti, L. P., Hendrawan, A. luky S., & Krismono, K. (2018). Water quality management through the application of fish farming in floating net cages “Smart.” Jurnal Kebijakan Perikanan Indonesia, 10(2), 87. https://doi.org/10.15578/jkpi.10.2.2018.87-97

Barg, U. C. (1993). Guidelines for the promotion of environmental management of coastal aquaculture development (328th ed.). FAO FISHERIES TECHNICAL PAPER 328.

Chu, Y. T., & Brown, P. B. (2021). Evaluation of pacific whiteleg shrimp and three halophytic plants in marine aquaponic systems under three salinities. Sustainability (Switzerland), 13(1), 1–14. https://doi.org/10.3390/su13010269

Diatin, I., Shafruddin, D., Hude, N., Sholihah, M., & Mutsmir, I. (2021). Production performance and financial feasibility analysis of farming catfish (Clarias gariepinus) utilizing water exchange system, aquaponic, and biofloc technology. Journal of the Saudi Society of Agricultural Sciences, 20(5), 344–351. https://doi.org/10.1016/j.jssas.2021.04.001

Enduta, A., Jusoh, A., Ali, N., & Wan Nik, W. B. (2011). Nutrient removal from aquaculture wastewater by vegetable production in aquaponics recirculation system. Desalination and Water Treatment, 32(1–3), 422–430. https://doi.org/10.5004/dwt.2011.2761

Esparza-Leal, H. M., Valenzuela-Quiñónez, W., Ponce-Palafox, J. T., Beltrán, H. C., & Figueroa, J. L. A. (2009). The effect of low salinity water with different ionic composition on the growth and survival of litopenaeus vannamei (boone, 1931) in intensive culture. Journal of Applied Aquaculture, 21(4), 215–227. https://doi.org/10.1080/10454430903113958

Fierro-Sanudo, J. ., S.G, A.-S., J.G, L.-C., Gutierrez-Valenzuela J.G, J, R.-R., Mariscal-Lagarda M.M., F.-N. M. ., R, L.-J., Osuna-López, J. I., & F, P.-O. (2015). Integrated culture of shrimp ( Litopenaeus vannamei ), tomato ( Lycopersicon esculentum ) and lettuce (Lactuca sativa) using diluted seawater : management , production and water consumption. Global Advanced Research Journal of Agricultural Science, 4(7), 315–324.

Fierro-Sañudo, J. F., Rodríguez-Montes De Oca, G. A., León-Cañedo, J. A., Alarcón-Silvas, S. G., Martin Mariscal-Lagarda, M., Díaz-Valdés, T., & Federico Páez-Osuna, &. (2018). Production and management of shrimp-basil co-culture 63 Production and management of shrimp (Penaeus vannamei) in co-culture with basil (Ocimum basilicum) using two sources of low-salinity water. Lat. Am. J. Aquat. Res, 46(1), 63–71. https://doi.org/10.3856/vol46-issue1-fulltext-8

Goddek, S., Joyce, A., Wuertz, S., Körner, O., Bläser, I., Reuter, M., & Keesman, K. J. (2019). Decoupled Aquaponics Systems. In Aquaponics Food Production Systems. https://doi.org/10.1007/978-3-030-15943-6_8

Hu, Z., Lee, J. W., Chandran, K., Kim, S., & Khanal, S. K. (2012). Nitrous Oxide (N 2 O) Emission from Aquaculture: A Review. Environmental Science & Technology, 46(12), 6470–6480. https://doi.org/10.1021/es300110x

Jaffer, Y. D. D., Saraswathy, R., Ishfaq, M., Antony, J., Bundela, D. S. S., & Sharma, P. C. C. (2020). Effect of low salinity on the growth and survival of juvenile pacific white shrimp, Penaeus vannamei: A revival. Aquaculture, 515, 734561. https://doi.org/10.1016/j.aquaculture.2019.734561

Khairuddin, K., Sikanna, R., & Sabaruddin, S. (2017). Study of the ability of the roots of land kale plants (Ipomoea reptans poir) in absorbing mercury metal in polluted soil. KOVALEN, 3(3), 303–312. https://doi.org/10.22487/j24775398.2017.v3.i3.9340

Lennard, W. A., & Leonard, B. V. (2006). A Comparison of Three Different Hydroponic Sub-systems (gravel bed, floating and nutrient film technique) in an Aquaponic Test System. Aquaculture International, 14(6), 539–550. https://doi.org/10.1007/s10499-006-9053-2

Love, D. C., Fry, J. P., Li, X., Hill, E. S., Genello, L., Semmens, K., & Thompson, R. E. (2015). Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture, 435, 67–74. https://doi.org/10.1016/j.aquaculture.2014.09.023

Makmur, Asaad, A. I. J., & Rachmansyah. (2021). Small scale shrimp (Litopenaeus vannamei) nursery technology at high stocking density. IOP Conference Series: Earth and Environmental Science, 860(1). https://doi.org/10.1088/1755-1315/860/1/012025

Mariscal-Lagarda, M. M., Páez-Osuna, F., Esquer-Méndez, J. L., Guerrero-Monroy, I., del Vivar, A. R., & Félix-Gastelum, R. (2012). Integrated culture of white shrimp (Litopenaeus vannamei) and tomato (Lycopersicon esculentum Mill) with low salinity groundwater: Management and production. Aquaculture, 366–367, 76–84. https://doi.org/10.1016/j.aquaculture.2012.09.003

Miranda, F. R., Lima, R. N., Crisóstomo, L. A., & Santana, M. G. S. (2008). Reuse of inland low-salinity shrimp farm effluent for melon irrigation. Aquacultural Engineering, 39(1), 1–5. https://doi.org/10.1016/j.aquaeng.2008.04.001

Muqsith, A., Harahab, N., Mahmudi, M., & Fadjar, M. (2019). The estimation of loading feed nutrient waste from vannamei shrimp aquaculture pond and carrying capacity of coastal area in Banyuputih sub-district Situbondo Regency. AIP Conference Proceedings, 2120(1), 40037. https://doi.org/10.1063/1.5115675/1024740

Ni, M., Yuan, J., Hua, J., Lian, Q., Guo, A., Liu, M., Xin, J., Wang, H., & Gu, Z. (2020). Shrimp–vegetable rotational farming system: An innovation of shrimp aquaculture in the tidal flat ponds of Hangzhou Bay, China. Aquaculture, 518(June 2019), 734864. https://doi.org/10.1016/j.aquaculture.2019.734864

Ningsih, A., Mansyurdin, M., & Maideliza, T. (2016). Perkembangan Aerenkim Akar Kangkung Darat (Ipomoea Reptans Poir) dan Kangkung Air. Al-Kauniyah: Jurnal Biologi, 9(1), 37–43. https://doi.org/10.15408/kauniyah.v9i1.3356

Paena, M., Syamsuddin, R., Rani, C., & Tandipayuk, H. (2020). Estimasi Beban Limbah Organik Dari Tambak Udang Superintensif Yang Terbuang Di Perairan Teluk Labuange. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 12(2), 509–518. https://doi.org/10.29244/jitkt.v12i2.27738

Pantanella, E., Cardarelli, M., Colla, G., Rea, E., & Marcucci, A. (2012). Aquaponics vs. Hydroponics: Production and Quality of Lettuce Crop. Acta Horticulturae, 927, 887–894. https://doi.org/10.17660/actahortic.2012.927.109

Paudel, S. R., Luitel, S., Adhikari, R., Wagle, A., & You, K. (2019). Potential nitrous oxide (N 2 O) emission from aquaculture in Nepal. International Journal of Environmental Studies, 76(2), 318–328. https://doi.org/10.1080/00207233.2018.1560764

Rakocy, J. E., Masser, M. P., & Losordo, T. M. (2006). Recirculating aquaculture tank production systems: Aquaponics- integrating fish and plant culture. SRAC Publication - Southern Regional Aquaculture Center, 454, 16.

Raven, J. A. (1996). Into the voids: The distribution, function, development and maintenance of gas spaces in plants. Annals of Botany, 78(2), 137–142. https://doi.org/10.1006/anbo.1996.0105

Saab, I. N., & Sachs, M. M. (1996). A flooding-induced xyloglucan endo-transglycosylase homolog in maize is responsive to ethylene and associated with aerenchyma. Plant Physiology, 112(1), 385–391. https://doi.org/10.1104/pp.112.1.385

Samocha, T. M., Lawrence, A. L., & Pooser, D. (1998). Growth and survival of juvenile Penaeus vannamei in low salinity water in a semi-closed recirculating system. Israeli Journal of Aquaculture - Bamidgeh, 50(2), 55–59.

Saoud, I. P., Davis, D. A., & Rouse, D. B. (2003). Suitability studies of inland well waters for Litopenaeus vannamei culture. Aquaculture, 217(1–4), 373–383. https://doi.org/10.1016/S0044-8486(02)00418-0

Schardong, R. M. F., Moro, M. F., & Bonilla, O. H. (2020). Aquaponic System with White Shrimp Litopenaeus vannamei Rearing and Production of the Plants Batis maritima, Sarcocornia neei and Sporobolus virginicus. Brazilian Archives of Biology and Technology, 63, 2020. https://doi.org/10.1590/1678-4324-2020190118

Sunny, A. R., Islam, M. M., Rahman, M., Miah, M. Y., Mostafiz, M., Islam, N., Hossain, M. Z., Chowdhury, M. A., Islam, M. A., & Keus, H. J. (2019). Cost effective aquaponics for food security and income of farming households in coastal Bangladesh. Egyptian Journal of Aquatic Research, 45(1), 89–97. https://doi.org/10.1016/j.ejar.2019.01.003

Suroso, B., & Antoni, N. E. R. (2017). Respon Pertumbuhan Tanaman Kangkung Darat (Ipomoea reptans Poir) Terhadap Pupuk Bioboost dan Pupuk ZA. Agritrop : Jurnal Ilmu-Ilmu Pertanian (Journal of Agricultural Science), 14(1), 98–108. https://doi.org/10.32528/agr.v14i1.417

Syah, R., Fahrur, M., Suwoyo, H. S., & Makmur, M. (2017). Performansi Instalasi Pengolah Air Limbah Tambak Superintensif. Media Akuakultur, 12(2), 95. https://doi.org/10.15578/ma.12.2.2017.95-103

Syah, R., Makkmur, & Undu, M. C. (2014). Estimasi Beban Limbah Nutrien Pakan dan Daya Dukung Kawasan Pesisir Untuk Tambak Udang Vaname SuperIntensif. Jurnal Riset Akuakultur, 9(3), 439–448.

Syiam, R. N., Amalia, L., & Putri, D. I. (2021). Analysis of Differences in Shape, Size and Number of Stomata of Water Water Water (Ipomoea aquatica Forsskal) and Land Water (Ipomoea reptans Poir). Jurnal Life Science: Jurnal Pendidikan Dan Ilmu Pengetahuan Alam, 3(1), 12–18. https://doi.org/10.31980/jls.v3i1.1652

Tiro, L. La, Isa, I., & Iyabu, H. (2017). Potensi Tanaman Kangkung Air (Ipomoea Aquatica) Sebagai Bioabsorpsi Logam Pb dan Cu. Jurnal Entropi, 12(1), 81–86.

Wongkiew, S., Hu, Z., Chandran, K., Lee, J. W., & Khanal, S. K. (2017). Nitrogen transformations in aquaponic systems: A review. Aquacultural Engineering, 76, 9–19. https://doi.org/10.1016/j.aquaeng.2017.01.004

Yang, T., & Kim, H. J. (2019). Nutrient management regime affects water quality, crop growth, and nitrogen use efficiency of aquaponic systems. Scientia Horticulturae, 256(March), 108619. https://doi.org/10.1016/j.scienta.2019.108619.

Yousif, B. S., Nguyen, N. T., Fukuda, Y., Hakata, H., Okamoto, Y., Masaoka, Y., & Saneoka, H. (2010). Effect of salinity on growth, mineral composition, photosynthesis and water relations of two vegetable crops; New Zealand spinach (tetragonia tetragonioides) and water spinach (ipomoea aquatica). International Journal of Agriculture and Biology, 12(2), 211–216.

Zacharof, M. P., Mandale, S. J., Oatley-Radcliffe, D., & Lovitt, R. W. (2019). Nutrient recovery and fractionation of anaerobic digester effluents employing pilot scale membrane technology. Journal of Water Process Engineering, 31(June 2018), 1–10. https://doi.org/10.1016/j.jwpe.2019.100846

Zhou, L., Li, H., Qin, J. G., Wang, X., Chen, L., Xu, C., & Li, E. (2020). Dietary prebiotic inulin benefits on growth performance, antioxidant capacity, immune response and intestinal microbiota in Pacific white shrimp (Litopenaeus vannamei) at ow salinity. Aquaculture, 518(December 2019), 734847. https://doi.org/10.1016/j.aquaculture.2019.734847

Zhu, Z., Yogev, U., Goddek, S., Yang, F., Keesman, K. J., & Gross, A. (2022). Carbon dynamics and energy recovery in a novel near-zero waste aquaponics system with onsite anaerobic treatment. Science of the Total Environment, 833, 155245. https://doi.org/10.1016/j.scitotenv.2022.155245




DOI: http://dx.doi.org/10.15578/iaj.19.1.2024.57-73

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Creative Commons License
Indonesian Aquaculture Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats
p-ISSN: 0215-0883
e-ISSN: 2502-6577

 

Hasil gambar untuk isjd