Intraspecific Genetic Variation of Five Wild Indonesian Striped Snakehead (Channa striata (Bloch, 1793)) Populations Assessed Through 16S rRNA Sequences

Tuty Ari Suryani, Titik Tri Hastiwi, Shentarya Fitriani, Putri Agiestina, Ibnu Fajar, Katon Waskito Aji

Abstract


The striped snakehead (Channa striata) belongs to the order Perciformes, suborder Channoidei, and the family Channidae. This fish is native to Sumatra, Java, and Kalimantan, but introduced to Sulawesi and Papua. Channa striata have potential as a food source, and pharmacological agent. However, the study on the genetic variation of snakehead fish in Indonesia is currently limited to specific areas, thus the genetic data obtained is insufficient. Therefore, the aim of this study was to examine the intraspecific genetic variation of the striped snakehead from five different locations in Indonesia using the 16S mitochondrial gene as a genetic marker. The PCR method was conducted with two primers, 16Sar and 16Sbr. The data obtained were then analyzed using DNASTAR, BLAST, Mesquite, MEGAX, BEAST, DnaSP, and NETWORK. The result revealed that all striped snakeheads investigated have 98.85-99.51% similarity to C. striata from the GenBank. The mtDNA 16S sequences generated 5 haplotypes with 5 variable sites and 4 parsimony informative sites. The mean of haplotype diversity and nucleotide diversity were 0.706 ± 0.088 and 0.00325 ± 0.00052 respectively with genetic divergence ranging from 0% to 0.73%. The phylogenetic tree revealed two distinct clades which were supported by a bootstrap value of 100% (NJ and ML), as well as a posterior probability value of 1.00 (BI). This finding suggests that there is intraspecific genetic variation of wild striped snakehead populations in Indonesia, with two distinct groups consisting of the western part of Indonesia (Sumatera) and the central to the eastern part of Indonesia (Kalimantan, West Nusa Tenggara, and Papua). This study will be helpful in efforts to conserve and cultivate the striped snakehead through breeding programs in Indonesia.


Full Text:

PDF

References


Adamson, E. A., Hurwood, D. A., & Mather, P. B. (2012). Insights into historical drainage evolution based on the phylogeography of the chevron snakehead fish (Channa striata) in the Mekong Basin. Freshwater Biology, 57(11), 2211-2229.

Alam, M. S., Projna, F., Zafrin, M. S., Das, R., & Khan, M. G. Q. (2022). Assessment of genetic diversity, detection of strain-specific single nucleotide polymorphisms and identification of the Bangladesh and Vietnam strain of Channa striata by PCR-RFLP analysis of the mitochondrial COI gene fragment. Aquaculture and Fisheries, 7(3), 287-295.

Aquino, L. M. G., Tango, J. M., Canoy, R. J. C., Fontanilla, I. K. C., Basiao, Z. U., Ong, P. S., & Quilang, J. P. (2011). DNA barcoding of fishes of Laguna de Bay, Philippines. Mitochondrial DNA, 22(4), 143-153.

Arisuryanti, T., Firdaus, N.U.N., & Hakim, L. (2020). Genetic characterization of striped snakehead (Channa striata Bloch, 1793) from Arut River, Central Kalimantan inferred from COI mitochondrial gene. AIP Conference Proceedings, 2260, 020001.

Baisvar, V. S., Kumar, R., Singh, M., Singh, A. K., Chauhan, U. K., Mishra, A. K., & Kushwaha, B. (2018). Genetic diversity analyses for population structuring in Channa striata using mitochondrial and microsatellite DNA regions with implication to their conservation in Indian waters. Meta Gene, 16, 28-38.

Baisvar, V. S., Singh, M., & Kumar, R. (2019). Population structuring of Channa striata from Indian waters using control region of mtDNA. Mitochondrial DNA Part A, 30(3), 414-423.

Bhat, A. A., Haniffa, M. A., Milton, M. J., Paray, B. A., Divya, P. R., & Gopalakrishnan, A. (2014). Genetic variation of striped snakehead (Channa striatus Bloch, 1793) populations using random amplified polymorphic DNA (RAPD) markers. International Journal of Biodiversity and Conservation, 6(5), 363–372.

Cawthorn, D.M., H.A. Steinman & R.C. Witthuhn. 2012. Evaluation of the 16S and 12S rRNA genes as universal markers for the identification of commercial fish species in South Africa. Gene 491 (1): 40-48.

Courtenay, W. R., & Williams, J. D. (2004). Snakeheads (Pisces, Channidae)- A Biological Synopsis and Risk Assessment. (p. 06). Florida: U.S Geological Survey.

Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature methods, 9(8), 772-772.

Eschmeyer, W. N. and R. Fricke, and R. van der Laan (eds). (2018). Catalog of Fishes: Classification. http://www.calacademy.org/scientists/catalog-of fishesclassification/.

Falush, D., Stephens, M., & Pritchard, J. K. (2003). Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164(4), 1567-1587.

Gamaniel, I. B., & Gwaza, D. S. (2017). Molecular characterization of animal genetics resources, its potential for use in developing countries. Journal of Genetics and Genetic Engineering, 1(1), 43-57.

Hubert, N., Calcagno, V., Etienne, R. S., & Mouquet, N. (2015). Metacommunity speciation models and their implications for diversification theory. Ecology letters, 18(8), 864-881.

Irmawati, I., Tresnati, J., Fachruddin, L., Arma, N. R., & Haerul, A. (2017). Identification of wild stock and the first generation (F1) of domesticated snakehead fish, Channa spp. (Scopoli 1777) using partial Cytochrome C Oxidase Subunit I (COI) gene. Jurnal Iktiologi Indonesia, 17(2), 165-173.

Jamaluddin, J. A. F., Pau, T. M., & Siti-Azizah, M. N. (2011). Genetic structure of the snakehead murrel, Channa striata (Channidae) based on the cytochrome c oxidase subunit I gene: Influence of historical and geomorphological factors. Genetics and Molecular Biology, 34, 152-160.

Kottelat, M. (2013). The fishes of the inland waters of Southeast Asia: a catalogue and core bibliography of the fishes known to occur in freshwaters, mangroves and estuaries. Raffles Bulletin of Zoology.

Kumar, S., G Stecher, M Li, C Knyaz, K Tamuraet al., (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547-1549.

Lakra, W. S., Goswami, M., Gopalakrishnan, A., Singh, D. P., Singh, A., & Nagpure, N. S. (2010). Genetic relatedness among fish species of genus Channa using mitochondrial DNA genes. Biochemical Systematics and Ecology, 38(6), 1212-1219.

Liu, B. H. (2017). Statistical genomics: linkage, mapping, and QTL analysis. CRC press.

Lohman, D. J., de Bruyn, M., Page, T., von Rintelen, K., Hall, R., Ng, P. K., Shih, H.T., Carvalho, G.R. & Von Rintelen, T. (2011). Biogeography of the Indo-Australian archipelago. Annual Review of Ecology, Evolution, and Systematics, 42, 205-226.

Luikart, G., Sherwin, W. B., Steele, B. M., & Allendorf, F. W. (1998). Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Molecular ecology, 7(8), 963-974.

Mohanty, M., Jayasankar, P., Sahoo, L., & Das, P. (2015). A comparative study of COI and 16 S rRNA genes for DNA barcoding of cultivable carps in India. Mitochondrial DNA, 26(1), 79-87.

Nei S, Kumar M. (2000). Molecular phylogenetics. New York: Oxford University Press.

Newman, D., & Pilson, D. (1997). Increased probability of extinction due to decreased genetic effective population size: experimental populations of Clarkia pulchella. Evolution, 51(2), 354-362.

Nguyen, N. T., & Duong, T. Y. (2016). Morphological and genetic differences between cultured and wild populations of Channa striata in Viet Nam and its phylogenetic relationship with other Channa species. Song klanakarin Journal Science of Technology, 38, 427-434.

Rahayu, G. K., Solihin, D. D., & Butet, N. A. (2021). Population diversity of striped snakehead, Channa striata (Bloch, 1793) from Bekasi, West Java and Barito Kuala, South Kalimantan using Cytochrome B gene. Jurnal Iktiologi Indonesia, 21(1), 61-73.

Rambaut, A. (2019), ‘FigTree v 1.4.4.’, http://tree.bio.ed.ac.uk/software/figtree/.

Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular biology and evolution, 34(12), 3299-3302.

Song, L. M., Munian, K., Abd Rashid, Z., &Bhassu, S. (2013). Characterisation of Asian snakehead murrel Channa striata (Channidae) in Malaysia: an insight into molecular data and morphological approach. The Scientific World Journal, 2013.

Spielman, D., Brook, B. W., & Frankham, R. (2004). Most species are not driven to extinction before genetic factors impact them. Proceedings of the National Academy of Sciences, 101(42), 15261-15264.

Suchard, M. A., Lemey, P., Baele, G., Ayres, D. L., Drummond, A. J., &Rambaut, A. (2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus evolution, 4(1), 1-5.

Tan, M. P., Jamsari, A. F. J., Muchlisin, Z. A., & Azizah, M. S. (2015). Mitochondrial genetic variation and population structure of the striped snakehead, Channa striata in Malaysia and Sumatra, Indonesia. Biochemical Systematics and Ecology, 60, 99-105.

Tran, D. D., Shibukawa, K., Nguyen, T. P., HA, P. H., Tran, X. L., Mai, V. H., & Utsugi, K. 2013. Fishes of the Mekong Delta, Vietnam (p.125). Can Tho City: Can Tho University Publishing House.

Vinson, C., Gomes, G., Schneider, H., & Sampaio, I. (2004). Sciaenidae fish of the Caeté River estuary, Northern Brazil: mitochondrial DNA suggests explosive radiation for the Western Atlantic assemblage. Genetics and Molecular Biology, 27, 174-180.

Wang, Z., Zhou, J., Ye, Y., Wei, Q., & Wu, Q. (2006). Genetic structure and low-genetic diversity suggesting the necessity for conservation of the Chinese longsnout catfish, Leiocassis longirostris (Pisces: Bagriidae). Environmental Biology of Fishes, 75(4), 455-463.

Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R., & Hebert, P. D. (2005). DNA barcoding Australia's fish species. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1462), 1847-1857.

Yang, L., Tan, Z., Wang, D., Xue, L., Guan, M. X., Huang, T., & Li, R. (2014). Species identification through mitochondrial rRNA genetic analysis. Scientific reports, 4(1), 1-11.




DOI: http://dx.doi.org/10.15578/ifrj.29.1.2023.%25p


Creative Commons License
Indonesian Fisheries Research Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats
p-ISSN 0853-8980
e-ISSN 2502-6569

Find in a library with WorldCatCrossref logoSHERPA/RoMEO Logogoogle scholardoaj