fathur rochman, Widodo Setiyo Pranowo, Irwan Jatmiko


The current study highlighted the relationship between the number of ALB catch, swimming layer and sub-surface oceanographic variables (temperature, dissolved oxygen, salinity, nitrate, phosphate and silicate) in Eastern Indian Ocean. This data used in this study were based on the Research Institute for Tuna Fisheries (RITF) observer program in Benoa from 2010-2013. This paper presents the information about vertical distribution of Albacore and its relations to sub surface oceanographic variables (SSOV). Results show that the optimum catch of albacore occurred at depth of 118 to 291 m with the average temperature between       12.41-20.47 °C, dissolved oxygen 3.24-4.68 ml/l , salinity 34.78-35.01 psu, nitrate 6.78-17.50 µ mol/l, phosphate 0.62-1.27 µ mol/l and  silicate 10.06-24.77 µ mol/l. The highest catches of albacore are mostly at depth of 156 m (hook number 2 and 11) with the average temperature 18.71°C, dissolved oxygen 4.68 ml/l, salinity 34.78 psu, nitrate 10.71 µ mol/l, phosphate 0.86 µ mol/l and silicate 15.95 µ mol/l. The highest influence of swimming layer and sub-surface oceanographic variable to the number of ALB catch contained at depth of 291 m of albacore swimming layer with coefficient correlation ( r ) 0.934 and determination coefficient ( R2) 0.872.  The lowest influence of  swimming layer and sub-surface oceanographic variable to the number of ALB catch  contained at depth of 156 m of albacore swimming layer with coefficient correlation ( r ) 0.528 and determination coefficient   ( R2) 0,279. The relationship between swimming layer and sub-surface oceanographic variable on catch of  ALB tuna was low (<0.500). 


swimming layer, sub surface oceanographic variable, albacore and Easter Indian Ocean

Full Text:



Barata, A., D. Novianto & A. Bahtiar. (2011). The distribution of tunas based on temperature and depth in Indian Ocean. Indonesian Marine Science Journal. Diponegoro University. Semarang. (Vol 16). No 3. p. 165-170.

Bureau of technical supervision of the P.R of China. (1992). The Specification for Oceanographic Survey, Oceanographic Survey Data Processing (GB/T 12763.7—91). Standards press of China. P. 68-70 pp.

Chen I. C., Lee P. F., & Tzeng N. W. 2005. Distribution of Albacore (Thunnus alalunga) in The Indian Ocean and Its Relation to Environmental Factor. Fish Oceanography 14:1, p. 71-80.

Cosgrove, R., Arregui,I., Arrizablaga, H., Goni, N., Sheridan, M., (2014). New insights to behavior of North Atlantic albacore tuna (Thunnus alalunga) observed with pop-up satellitearchival tags. Fisheries Research. 150, 89-99 pp.

Domokos, R., Seki, M.P., Polovina, & J.J., Hawn, D.R., (2007). Oceanographic investigation of the American Samoa albacore (Thunnus alalunga) habitat and longline fishing grounds. Fish. Oceanography. 16, 555-572 pp.

Foreman, T.J., (1980). Synopsis of biological data on the albacore tuna, Thunnus alalunga (Bonaterre, 1788), in the Pacific Ocean. In Synopses of biological data on eight species of scombroids, Ed.W. H. Bayliff. IATTC, La Jolla, California: 17-70 pp.

Graham, J.B. & Dickson, K.A., (1981). Physiological thermoregulation in the albacore tuna (Thunnus alalunga). Physiol. Zool.54,470–486 pp.

Guntara, A. (2004). Structure community of vertically deep marine fish in Indian Ocean South of Cilacap. Fisheries and Marine science. Bogor Agriculture Institute. 102 p.

Hadi, S. (2004). Research Methodology. Andi Press. Yogyakarta. 300-303 pp.

IOTC. (2014). Executive summary of the status of the albacore tuna resource. IOTC–2014–SC17–ES01 Rev_1. 14 pp

ISSF. (2014). Status of the world fisheries for tuna: Management of tuna stocks and fisheries, 2014. ISSF Technical Report 2014-05. International Seafood Sustainability Foundation, Washington, D.C., USA

Kasma, E., T. Osawa & I. W. S. Adnyana. (2008). Estimation of primary productivity for tuna in Indian Ocean. ECOTROPIC. 4 Vol. 2 : 86-91 pp.

Kunarso, S. Hadi, N. S. Ningsih & M. S. Baskoro. (2012). Changes in the thermocline depth and thickness variation of ENSO, IOD and monsoon in South of Java to Timor island. Marine science Journal. Bogor Agriculture Institute. Vol. 17 (2) 87-98 pp.

Lai, N. C., J. B. Graham, W. R. Lowell & R. M. Laurs. (1987). Pericardinal and vascular pressures and blood flow in the albacore tuna, Thunnus alalunga. Exp. Biol. Vol. 46 : 187-192 pp.

Latumeten, A. L., F. Purwanti, & A. Hartoko. (2013). The analysis of relationship between sea surface temperature, chlorophyll-a of Modis satelite data and sub-surface temperature of Argo Float data to the number of tuna catches in Indian Ocean. Management of Aquatic Resource Journal. Diponegoro University. Vol 2. No 2. 1-8 pp.

Lehodey, P. (2002). SEPODYM development and application to skipjack population and fisheries. Oceanic Fisheries Programme, Secretariat of the Pacific Community, Noumea, New Caledonia. SCTB 15: Working Paper SKJ -2.

Nontji. (1993). Sea archipelago. Reference book. Djambatan, Jakarta . 368 p.

Nugraha, B. & S. Triharyuni. (2009). The effect of temperature and hook depth of tuna longline to catch of tuna in Indian Ocean. Indonesian Fisheries Research Journal. Indonesian Fisheries Research Journal. Research Centre for Fisheries Management and Conservation. Indonesian Fisheries and Marine Affairs. 15. (3) : p. 239-247.

Nybakken, J. W. (1992). Marine Biology. An ecological approach. Translated by Eidman, Koesobiono, D. G. Bengen, M. Hutomo, and S. Sukarjo. Press 2. Gramedia. Jakarta.

Song, L.M., Y. Zhang, & Y. Zhou. (2007). The relationship between the thermocline and the catch rate of Thunnus obesus in the tropical areas of the Indian Ocean. In:Anonymous (Ed.). IOTC Proceeding-WPTT-14-rev1. 13 pp.

Syamsuddin, M. L., S. I. Saitoh, T. Hirawake, S. Bachri, & A.B. Harto. (2013). Effects of El Niño–Southern Oscillation events on catches of Bigeye Tuna (Thunnus obesus) in the Eastern Indian Ocean Off Java. Fish. Bull 111:175–188 pp.

Williams, A. J., V.Allain, S. J. Nicol, K. J. Evans, S. D. Hoyle, C. Dupoux, E. Vaorey & J. Dubosc. (2014). Vertical behavior and diet of albacore tuna (Thunnus alalunga) vary with latitude in the South Pacific Ocean. Deep-Sea Res. II (2014),


Creative Commons License
Indonesian Fisheries Research Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats
p-ISSN 0853-8980
e-ISSN 2502-6569

Find in a library with WorldCatCrossref logoSHERPA/RoMEO Logogoogle scholardoaj