TOKSISITAS NANOPARTIKEL TERHADAP BIOTA DAN LINGKUNGAN LAUT

Muhammad Safaat, Diah Anggraini Wulandari

Abstract


Nanopartikel disintesis melalui metode fisika, kimia, dan green synthesis. Kelemahan dari metode fisika adalah konsumsi energi yang tinggi, sedangkan metode kimia memiliki potensi bahaya yang tinggi dalam toksisitas atau produk samping dari reaksi. Penanganan nanomaterial yang tidak tepat merupakan hal yang harus diperhatikan karena dapat membahayakan ekosistem laut. Faktor bahaya dari nanopartikel logam oksida adalah disolusi, yaitu pelepasan ion logam dari logam oksida ke dalam media perairan dan penyerapan ion logam oleh organisme sekitar. Nanopartikel dapat teradsorpsi ke permukaan sel dan menyebabkan perubahan struktur membran lipid dari sel melalui reaksi peroksidasi. Penyebab pembentukan ion logam di air laut terjadi karena terdapat senyawa organik alami seperti asam fulvat dan sistein. Toksisitas nanopartikel terhadap biota laut tergantung pada sifat fisikokimia nanopartikel saat berada di dalam air. Pemakaian nanopartikel yang turut serta dalam pendistribusian nanopartikel sebagai bahan pencemar di ekosistem perairan akan dijelaskan. Selain itu, analisis implikasi dari sintesis nanopartikel terhadap efek toksik yang ditimbulkan juga akan dilakukan sebagai evaluasi efektivitas dari metode sintesis nanopartikel terhadap lingkungan.

Full Text:

PDF

References


Adams, L. K., Lyon, D. Y., & Alvarez, P. J. J. (2006). Comparative eco-toxicity ofnanoscale TiO2, SiO2, and ZnO water suspensions. Water Research, 40(19), 3527–3532.

Amooaghaie, R., Saeri, M. R., & Azizi, M. (2015). Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles. Ecotoxicology Environmental Safety, 120(1), 400–408.

Bondarenko, O., Juganson, K., Ivask, A., Kasemets, K., Mortimer, M., & Kahru, A. (2013). Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review. Archives of Toxicology, 87(7), 1181–1200. https://doi.org/10.1007/s00204-013-1079-4.

Borm, P., Robbins, D., Haubold, S., Kuhlbusch, T., Fissan, H., Donaldson, K., et al. (2006). The Potential Risks of Nanomaterials: A Review Carried out for ECETOC, Particle, Fibre Toxicology, 3(1), 1743–8977.

Botta, C., Labille, J., Auffan, M., Borschneck, D., Miche, H., Cabié, M., Masion, A.,Rose, J., & Bottero, J.Y. (2011). TiO2-based nanoparticles released in water fromcommercialized sunscreens in a life-cycle perspective: structure and quantities. Environmental Pollution, 14(8), 1543-1550.

Chalew, T.E.A., Galloway, J. F., & Graczyk, T. K. .(2012) Pilot study on effects of nanoparticle exposure on Crassostrea virginica hemo-cyte phagocytosis. Marine Pollutan Bulletin, 64(10), 2251–2253.

Cheng, J., Flahaut, E., & Cheng, S. H. (2007). Effect of Carbon Nanotubes on Developing Zebrafish (Danio rerio) Embryos. Environmental Toxicology and Chemistry, 26(4), 708–716.

Cherchi, C., & Gu, A. Z. (2010). Impact of titanium dioxide nanomaterials on nitrogen fixation rate and intracellular nitrogen storage in Anabaena variabilis, Environmental Science and Technology, 47(4), 8302-8307.

Conway, J. R., Adeleye, A. S., Gardea-Torresdey J., & Keller A. A. (2015). Aggregation, dissolution, and transformation of copper nanoparticles in natural waters, Environmental Science Technology, 49(5), 2749–2756. doi: 10.1021/es504918q.

Daniel, M. C. & Astruc, D. (2004). Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties and applications toward biology, catalysis and nanotechnology, Chemical Reviews., 104(1), 293–346.

Dineshram, R., Subasri, R., Somaraju, K. R. C., Jayaraj, K., Vedaprakash, L., Ratnam, K., et al. (2009). Biofouling studies on nanoparticles-based metal oxide coatings on glass coupons exposed to marine environment. Colloids and Surfaces B: Biointerfaces, 74(1), 75-83.

Doble, M., & Kruthiventi, A. K. (2007). Green chemistry and engineering. Cambridge: Academic Press.

Ebrahiminezhad, A., Ghasemi, Y., Rasoul-Amini, S., Barar, J., & Devaran, S. (2013) Preparation of novel magnetic fluorescent nanoparticles using amino acids. Colloid and Surface B: Biointerfaces., 102(1), 534–539.

Ebrahiminezhad, A., Ghasemi, Y., Rasoul-Amini, S., Barar, J., & Devaran, S. (2012). Impact of amino-acid coating on the synthesis and characteristics of iron-oxide nanoparticles (IONs). Bulletin Korean Chemistry Society, 33(1), 3957–3962.

Elsaesser, A, & Howard, C. V., (2012). Toxicology of nanoparticles. Advance Drug Delivery Review, 64(2), 129–137.

Federici, G., Shaw, B. J., & Handy, R. D. (2007) Toxicity of Titanium Dioxide Nanoparticles Next Term to Rainbow Trout (Oncorhynchus mykiss): Gill Injury, Oxidative Stress, and Other Physiological Effects. Aquatic Toxicology, 84(4), 415–430.

Franklin, N.M., Rogers, N. J., Apte, S. C, Batley, G. E., Gadd, G.E., & Casey, P.S. (2007). Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): Theimportance of particle solubility. Enviromental Science and Technology, 41(24), 8484–8490.

Fukushi, K., & Sato, T. (2005). Using a Surface Complexation Model To Predict the Nature and Stability of Nanoparticles. Environmental Science and Technology. 39(5), 1250–1256.

Gholami, A., Rasoul-amini, S., Ebrahiminezhad, A., Seradj, S.H., Ghasemi, Y. (2015). Lipoamino acid coated superparamagnetic iron oxide nanoparticles concentration and time dependently enhanced growth of human hepatocarcinoma cell line (Hep-G2). Journal Nanomater., 9(1), 12-20. doi:10.1155/2015/451405.

Golobic, M., Jemec, A., Drobne, D., Romih, T., Kasemets, K., & Kahru, A. (2012). Upon exposure to Cu nanoparticles, accumulation of copper in the isopod Porcellio scaber is due to the dissolved Cu ions inside the digestive tract. Environ. Sci. Technol., 46(21), 12112–12119. doi: 10.1021/es3022182.

Griffitt, R. J., Luo, J., Gao, J., Bonzongo, J. C., & Barber, D.S. (2008). Effects of Particle Composition and Species on Toxicity of Metallic Nanomaterials in Aquatic Organisms. Environmental Toxicolology and Chemistry, 27(9), 1972–1978.

Griffitt, R. J., Weil, R., Hyndman, K. A., Denslow, N.D., Powers, K., Taylor D., et al. (2007). Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio), Enviromental Science and Technology, 41(23), 8178–8186. doi: 10.1021/es071235e.

Guajardo-Pacheco, M. J., Morales-Sánchez, J. E., González-Hernández, J., & Ruiz, F. (2010). Synthesis of copper nanoparticles using soybeans as a chelant agent, Materials Letter. 64(1), 1361–1364. doi: 10.1016/j.matlet.2010.03.029.

Han, C., Pelaez, M., Nadagouda, M. N., Obare, S. O., Falaras, P., & Dionysiou D. D. (2013). Chapter 5: The green synthesis and environmental applications of nanomaterials. In: Luque R., Varma R. S. (Ed.) Sustainable Preparation of Metal Nanoparticles: Methods and Applications. The Royal Society of Chemistry (pp. 106–143). Cambridge: UK.

Handy, R. D., Kammer, F., Lead, J. R., Hassellov, M., Owen, R., & Crane, M. (2008). The Ecotoxicology and Chemistry of Manufactured Nanoparticles. Ecotoxicology, 17(4). 287–314

Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H. C., & Kahru, A. (2008). Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus, Chemosphere, 71(7), 1308–1316.

Hoegh-Guldberg, O., & Bruno, J. F., (2010). The impact of climate change on the world's marine ecosystems. Marine Science, 328(1), 1523–1528.

Hou, J., Wu, Y., Li, X., Wei, B., Li, S., & Wang, X.(2018). Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms. Chemosphere, 193(1), 852–860.

Hsiao, I. L., Wang, C. F., Chen, I. C., &Huang, Y. J. (2015). Trojan-horse mechanism in the cellular uptake of silver nanoparticles verified by direct intra- and extracellular silver speciation analysis. Environmental Science and Technology, 49(1), 3813–3821.

Hyung, H., Fortner, J., Hughes, J., & Kim, J. (2007). Natural organic matter stabilize carbon nanotubes in the aqueous phase, Environmental Science and Technology, 41(1), 179-184.

Iravani, S. (2011). Green synthesis of metal nanoparticles using plants, Green Chemistry research., 13(10), 2638–2650. doi: 10.1039/c1gc15386b.

Isaacson, C. W., Usenko, C. Y., Tanguay, R.L., & Field, J.A. (2007) Quantification of Fullerenes By LC/ESI-MS and its Application to in Vivo Toxicity Assays. Analytical Chemistry, 79(23), 9091–9097.

Ju-Nam, Y., & Lead, J. R. 2008. Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental problems, Science of the Total Environment, 400(1-3), 396-414.

Karimi, J., & Mohsenzadeh, S. (2015). Rapid, green, and eco-friendly biosynthesis of copper nanoparticles using flower extract of Aloe vera, Synthetic Reactivity Inorgonanic and Metal organic., 45(6), 895–898. doi: 10.1080/15533174.2013.862644.

Karlsson, H. L., Cronholm, P., Gustafsson, J., & Moller,L. (2008). Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes, Chemimical Research in Toxicology, 21(9), 1726–1732. doi: 10.1021/tx800064j.

Katsumiti, A., Gilliand, D., Arostegui, I., & Cajaraville, M. P. (2015).Mechanisms of toxicity of Ag nanoparticles in comparison to bulk and ionic Ag on mussel hemocytes and gill cells. Plos One, 10(1), 1–30.

Klaine, S. J., Alvarez, P. J., Batley, G. E., Fernendes, T. F., Handy, R. D., Lyon, D. Y., et. al. (2008). Nanomaterials in the Environment: Behavior, Fate, Bioavailability, and Effects. Environmental Toxicology Chemistry, 27(9), 1825–1851.

Korbekandi, H., Iravani, S., Abbasi, S. (2012) Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp. casei. Journal Chemical Technology and Biotechnology., 87(1), 932–937. https://doi.org/10.1002/jctb.3702.

Labille, J., Feng, J., Botta, C., Borschneck, D., Sammut, M., Cabie, M., Auffan, M.,Rose, J., & Bottero, J. Y. (2010) Dec. Aging of TiO(2) nanocomposites used insunscreen. Dispersion and fate of the degradation products in aqueous envi-ronment. Environmental Pollution, 158(1), 3482-3489.

Leonard, K, Ahmmad, B, Okamura, H, & Kurawaki, J. (2011). In situ green synthesis of biocompatible ginseng capped gold nanoparticles with remarkable stability. Colloids Surf B Biointerfaces, 82(2), 391–6.

Li, N., Zhao, P. & Astruc, D. (2014). Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity, Angewandte Chemie International Edition., 53(7), 1756–1789.

Lovern, S. B. & Klaper, R. (2006) Daphnia Magna Mortality When Exposed to Titanium Dioxide and Fullerene (C60) Nanoparticles. Environmental Toxicology Chemistry, 25(4), 1132–1137.

Lovern, S. B., Strickler, J. R., & Klaper, R. (2007) Behavioral and Physiological Changes in Daphnia Magna When Exposed to Nanoparticle Suspensions (Titanium Dioxide, Nano-C60, and C60Hx C70Hx), Environmental Science and Technology , 41(12), 4465–4470.

Mazno, S., Miglietta, M. L., Rametta, G., Buono, S., Francia, G. D. (2013). Toxic effect of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Science of Total Enviroment. 445-446, 371-376.

McShan, D., Ray, P. C, & Yu Hangtao. (2014). Molecular toxicity mechanism of nanosilver. Journal of Food Drug Analysis, 22(1).116–12721.

Melegari, S. P., Perreault, F., Costa, R. H., Popovic, R., & Matias, W. G. (2013). Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii, Aquatic Toxicology, 142–143, 431–440. doi: 10.1016/j.aquatox.2013.09.015.

Metzler, D. M., Li, M., Erdem, A., & Huang, C. P. (2011). Responses of algae to photocatalytic nano-TiO2 particles with an emphasis on theeffect of particle size. Chemical Engineering Journal, 170 (2-3), 538–546.

Miao, A. J., Zhang, X.Y., Luo, Z., Chen, C. S., Chin, W.C., Santschi, P.H. et al. (2010). Zinc oxide engineered nanoparticles: dissolution and toxicity to marine phytoplankton. Enviromental Toxicology Chemistry, 29(12), 2814–22.

Miller, R. J., Bennett S., Keller, A., Pease, S., & Lenihan, H.S. (2012). TiO2 Nanoparticles Are Phototoxic to Marine Phytoplankton. Plos one . 7(1), 1-7.

Miller, R. J., Lenihan, H. S., Muller, E. K., Tseng, N., Hanna, S. K., & Keller, A. A. (2010). Impacts of metal oxide nanoparticles on marine phytoplankton, Environmental Science and Technology. 44(19), 7329-7334.

Naika, H. R., Lingaraju, K., Manjunath, K., Kumar, D., Nagaraju, G., Suresh, D., & Nagabhushana, H. (2015). Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity, Journal Taibah University for Science, 9(1), 7–12.

Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A.J., et. al. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17(5), 372-386.

Oberdorster, E., Zhu, S., Blickley, T. M., McClellan-Green, P., & Haasch, M. L. (2006). Ecotoxicology of Carbon-Based Engineered Nanoparticles: Effects of Fullerene (C60) on Aquatic Organisms. Carbon, 44(1), 1112–1120.

Ono-Ogasawara, M., Takaya, M., & Yamada, M. (2015). Exposure assessment of MWCNTs in their life cycle. Journal Physics Conference Series, 617(1), 11-19. doi: 10.1088/1742-6596/617/1/012009.

Peng, X., Palma, S., Fisher, N. S., & Wong, S.S. (2011). Effect of morphology of ZnO nano-structures on their toxicity to marine algae. Aquatic Toxicology, 102(3-4), 186-198.

Phenrat, T., Saleh N., Sirk, K., Tilton, R. D., & Lowry, G. V. (2007). Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Enviromental Science and Technology, 41(1), 284-290.

Raliya, R., & Tarafdar, J. C. (2014). Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: an eco-friendly approach. International Nano Letter., 4(1), 93. https://doi.org/10.1007/s40089-014-0093-8.

Ranjith, K. S., Castillo, R. B., Sillanpaa, M., & Rajendra Kumar, R. T. (2018). Effective shell wall thickness of vertically aligned ZnO-ZnS core-shell nanorod arrays on visible photocatalytic and photo sensing properties. Applied Catalysis B: Environmental, 237(1), 128–139. https://doi.org/10.1016/j.apcatb.2018.03.099

Rastogi, L., Kora, A. J., & Sashidhar, R. B. (2015). Antibacterial effect of gum kondagogu reduced/stabilized silver nanoparticels in combination with various antibiotics: a mechanistic approach. Applied Nanoscience, 5(5), 535-543.

Rispoli, F., Angelov, A., Badia, D., Kumar, A., Seal, S., Shah, V. (2010). Understanding the toxicity of aggregated zero valent copper nanoparticles against Escherichia coli, Journal Hazard. Material, 180(1-3), 212–216. doi: 10.1016/j.jhazmat.2010.04.016.

Roberts, A. P., Mount, A. S., Seda, B., Souther, J., Qiao, R., Lin, S., et al. (2007) In Vivo Bio-modification of Lipid-Coated Carbon Nanotubes by Daphnia magna. Environmental Science Technology, 41(8), 3025–3029.

Saif, S., Tahir, A., Asim, T., & Chen, Y. (2016). Comparison of Toxicity of Engineered and Plant Mediated CuO Nanoparticles towards Daphnia magna. Nanomaterials, 6(11), 205.

Serrà, A., Zhang, Y., Sepúlveda, B., Gómez, E., Nogués, J., Michler, J., & Philippe, L. (2019). Highly reduced ecotoxicity of ZnO-based micro/nanostructures on aquatic biota: Influence of architecture, chemical composition, fixation, and photocatalytic efficiency. Water Research, 169(3),155-210 ,doi:https://doi.org/10.1016/j

Sharma, V.K., Siskova, K. M., Zboril, R. & Gardea-Torresdey, J.L. (2014), Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicit. Advance Colloid Interface Science, 204(1), 15-34.

Siddiqui, S., Goddard, R. H., & Bielmyer-Fraser, G. K. (2015). Comparative effects of dissolved copper and copper oxide nanoparticle exposure to the sea anemone, Exaiptasia pallida, Aquatic Toxicology, 160(1), 205–213.

Smith, C. J., Shawa, B. J. & Handy, R. D. (2007) Toxicity of Single Walled Carbon Nanotubes to Rainbow Trout (Oncorhynchus mykiss): Respiratory Toxicity, Organ Pathologies, and Other Physiological Effects. Aquaic Toxicology, 82(2), 94–109.

Starnes, D. L., Jain, A. & Sahi, S. V. (2010). In planta engineering of gold nanoparticles of desirable geometries by modulating growth conditions: an environment-friendly approach. Enviromental Science Technology, 44(18), 7110–7115.

Stolpe, B., & Hassellov, M. (2007). Changes in size distribution of fresh water nanoscale colloidal matter and associated elements on mixing in seawater. Geochimicaand Cosmochimica Acta, 71(13), 3292-3301.

Sutradhar, P., Saha, M., & Maiti, D. (2014). Microwave synthesis of copper oxide nanoparticles using tea leaf and coffee powder extracts and its antibacterial activity, J. Nanostructure Chemistry, 4(1), 86. doi: 10.1007/s40097-014-0086-1.

Tamuly, C., Hazarika, M., Das, J., Bordoloi, M., Borah, D. J., & Das, M. R. (2014). Bio-derived CuO nanoparticles for the photocatalytic treatment of dyes, Materials Letter, 123(10), 202–205. doi: 10.1016/j.matlet.2014.03.010.

Tang, D. G., Hung, C. C., Warnken, K. W., & Santschi, P. H. (2000). The distributionof biogenic thiols in surface waters of Galveston Bay, Limnology Oceanography., 45(6), 1289–1297.

Tejamaya, M., Römer, I., Merrifield, R. C., & Lead, J. R. (2012). Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environmental Science and Technology, 46(1), 7011-7017.

Templeton, R. C., Ferguson, P. L., Washburn, K. M., Scivens, W. A., & Chandler, G. T. (2006) Life-Cycle Effects of Single-Walled Carbon Nanotubes (SWNTs) on an Estuarine Meiobenthic Copepod. Environmental Science and Technology, 40(23), 7387–7393.

Thekkae, Padil, V. V., & Černík, M. (2013). Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application, International Journal Nanomed. 8(1), 889–898.

Thit, A., Selck H., & Bjerregaard, H. F. (2013). Toxicity of CuO nanoparticles and Cu ions to tight epithelial cells from Xenopus laevis (A6): Effects on proliferation, cell cycle progression and cell death, Toxicology In Vitro, 27(5), 1596–1601. doi: 10.1016/j.tiv.2012.12.013.

Upadhyayula, V. K. K., & Gaghamshetty, V. (2010). Appreciating the role of carbon nanotube composites in preventing biofouling and promoting biofilms on material surfaces in environmental engineering. Biotechnology Advances, 28(6), 802-816.

Usenko, C. Y., Harper, S. L., & Tanguay, R. L. (2007). In Vivo Evaluation of Carbon Fullerene Toxicity using Embryonic Zebrafish, Carbon, 45(9), 1891–1898.

Usenko, C. Y., Harper, S. L., & Tanguay, R. L. (2008). Fullerene C60 Exposure Elicits An Oxidative Stress Response in Embryonic Zebrafish, Toxicology Applied in Pharmacology, 229(1), 44–55.

Viswadevarayalu, A., Ramana, P. V., Kumar, G. S., Sumalatha, J., & Reddy, S. A. (2016). Fine ultrasmall copper nanoparticle (UCuNPs) synthesis by using Terminalia bellirica fruit extract and its antimicrobial activity, Journal of Cluster Science, 27(1), 155–168. doi: 10.1007/s10876-015-0917-3.

Wang Y., Santos, A., Evdokiou, & Losic, D. (2015) An overview on nanotoxicity and nanomedicine research: principles, progress and implications on cancer therapy. Journal Material Chemistry B, 3(36), 7153–7172.

Wen, L., Lin, Z., Gu, P., Zhou, J., Yao, B., Chen, G., & Fu, J. (2009) Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route. Journal Nanoparticle Research. 11(1), 279–288. https://doi.org/10.1007/s11051-008-9378-z.

Xie, B., Xu, Z., Guo, W., & Li, Q. (2008). Impact of natural organic matter on the physicochemical properties of aqueous C60 nanoparticles, Environmental Scienceand Technology, 42(8), 2853-2859.

Yallappa, S., Manjanna, J., Sindhe, M. A., Satyanarayan, N. D., Pramod, S. N., & Nagaraja, K. (2013). Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract. Spectrochimica. Acta Part A Molecular Biomolecular Spectroscopy, 110(1), 108–115. doi: 10.1016/j.saa.2013.03.005.

Zhu, X., Chang, Y., & Chen, Y. (2010) Toxicity and Bioaccumulation of TiO2 Nanoparticle Aggregates in Daphnia magna, Chemosphere, 78(3),209–215.

Zhu, X., Zhou, J., & Cai, Z., (2011). The toxicity and oxidative stress of TiO2 nanoparticles in marine abalone (Haliotis diversicolor supertexta), Marine Pollution Bulletin, 63(5-12), 334-338.

Zhu, X., Zhu, L., Duan, Z., et. al. (2008). Comparative Toxicity of Several Metal Oxide Nanoparticle Aqueous Suspensions to Zebrafish (Danio rerio) Early Developmental Stage. Journal Environmental Science Health, 43(3), 278–284.

Zhu, X., Zhu, L., Li, Y., et. al. (2007) Developmental Toxicity in Zebrafish (Danio rerio) Embryos after Exposure to Manufactured Nanomaterials Buckminsterfullerene Aggregates (NC60) and Fullerol. Environmental Toxicology and Chemistry, 26(5), 976–979.

Zhu, Y., Zhao, Q., Li, Y., Chai, X., Li, W. (2006) The Interaction and Toxicity of Multi-Walled Carbon Nanotubes with Stylonychia Mytilus. Journal Nanoscience and Nanotechnology, 6(1), 1357–1364.




DOI: http://dx.doi.org/10.15578/jkn.v16i1.9051

Copyright (c) 2021 Muhammad Safaat, Diah Anggraini Wulandari


Creative Commons License

Copyright of Jurnal Kelautan Nasional (p-ISSN 1907-767Xe-ISSN 2615-4579)

Pusat Riset Kelautan
Badan Riset dan Sumberdaya Manusia Kelautan dan Perikanan
Kementerian Kelautan dan Perikanan

View My Stats

Index by