DINAMIKA SPASIAL IKAN MESOPELAGIS (ceratoscopelus warmingii LÜTKEN, 1892) DI SAMUDERA HINDIA
Abstract
Kajian mengenai ikan mesopelagis di perairan Samudera Hindia masih sangat terbatas, sehingga informasi terkait kelimpahan jenis ikan mesopelagis di Samudera Hindia sangat penting. Survei trawl lapisan pertengahan dilakukan pada tanggal 26 Juni-16 Juli 2015 di perairan laut lepas (high seas) Samudera Hindia untuk memperoleh data dan informasi tersebut dengan menggunakan kapal penelitian R.V. Dr. Fridtjof Nansen. Hasil penelitian menunjukkan distribusi kedalaman vertikal di malam hari jenis yang dominan C.warmingii sesuai dengan kedalaman operasi trawl yaitu 86,9 ± 38,6 m. Namun pada siang hari tidak ditemukan spesies C. warmingii saat operasi trawl pada kedalaman rata-rata 444,3 ± 45,96 m. Diperkirakan ketika siang hari distribusi C. warmingii terkonsentrasi pada lapisan perairan lebih dalam sehingga tidak terjangkau oleh jaring trawl tersebut. Distribusi spasial secara horizontal pada malam hari menunjukkan pola konsentrasi tertinggi berada pada area gyre yang diindikasikan dengan pola geostrophic circulation. Sementara, prosentase C. warmingii yang merupakan hasil tangkapan seluruh stasiun trawl selama penelitian terdiri dari 2,58% fase larva, 27,21% juvenile, dan 60,21% dalam keadaan dewasa.
Studies on mesopelagic fishes in the Indian Ocean are relatively limited, therefore data and information regarding spatial dynamic of the most abundant mesopelagic fish species Ceratoscopelus warmingii in the Indian Ocean would contribute a significant information on deepsea marine biodiversity. Pelagic-trawl stations were used to collect and identify the spatial dynamic of C. warmingii in the main scattering layers of the water column. Survey were carried out by RV Dr. Fridtjof Nansen in the high seas of Indian Ocean. Observation were made during day and night on 26th June to 16th July 2015 as part of the second International Indian Ocean Expedition (IIOE 2). The result shows that vertical distributions of C. warmingii were concentrated at the average depth 86.9 ± 38.6 m during nighttime. There were no individuals found during the daytime at the average depth 444.3 ± 45.96 m, diurnal migrations of C. warmingii to more than the depth of trawl operation might explain the absent of this species. Horizontal spatial distribution of trawl catches (number per hour) during nighttime show high concentration of C. warmingii close to gyre indicated by geostrophic circulation. Moreover, the total catches of C. warmingii across the Indian Ocean are dominated by 60.21% adult, 27.21% juvenile, and 2.58% larvae, respectively.
Keywords
Full Text:
PDFReferences
Barnett, M.A. (1983). Species structure and temporal stability of mesopelagic fish assemblages in the Central Gyres of the North and South Pacific Ocean. Marine Biology, 74(3), 245-256.
Beamish, R.J., Leask, K.D., Ivanov, O.A., Balanov, A.A., Orlov, A.M., & Sinclair, B. (1999). The ecology, distribution, and abundance of midwater fishes of the Subarctic Pacific gyres. Progress in Oceanography, 43(2), 399-442.
Bekker, V.E. (1983). Myctophid fishes of the world ocean: Moscow, Nauka.
Boerger., Christiana, M., Lattin., Gwendolyn, L., Moore., Shelly L., & Moore, Charles J. (2010). Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Marine Pollution Bulletin, 60(12), 2275-2278.
Brandt, S.B. (1981). Effects of a Warm-Core Eddy on Fish Distributions. Mar. Ecol. Prog. Ser, 6, 19-33.
Craddock., James, E., Backus., Richard, H., & Daher, Mary Ann. (1992). Vertical distribution and species composition of midwater fishes in warm-core Gulf Stream meander/ring 82-H. Deep Sea Research Part A. Oceanographic Research Papers, 39, S203-S218.
Davison., Peter., Lara-Lopez., Ana., & Koslow, J Anthony. (2015). Mesopelagic fish biomass in the southern California current ecosystem. Deep Sea Research Part II: Topical Studies in Oceanography, 112, 129-142.
Gilbert, Charles Henry. (1908). Reports on the Scientific Results of the Expedition to the Tropical Pacific, in Charge of Alexander Agassiz, by the US Fish Commission Steamer" Albatross" from August, 1899, to March, 1900, Commander Jefferson F. Moser, USN, Commanding: The Lantern Fishes. X: Museum of Comparative Zoology.
Gjøsaeter, J., & Kawaguchi, Kōichi. (1980). A review of the world resources of mesopelagic fish: Food & Agriculture Org.
Goldstein., Miriam, C., Rosenberg., Marci., & Cheng, Lanna. (2012). Increased oceanic microplastic debris enhances oviposition in an endemic pelagic insect. Biology Letters, 8(5), 817-820.
Hulley, P.A. (1984). Myctophidae. Fishes of the North-eastern Atlantic and the Mediterranean, 1, 429-483.
Irigoien., Xabier., Klevjer., Thor, A., Røstad., Anders., Martinez, U., Boyra, G., Acuña, JL., . . . Hernandez-Leon, S. (2014). Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nature communications, 5.
Kaartvedt, S., Staby., Arved., & Aksnes, D.L. (2012). Efficient trawl avoidance by mesopelagic fishes causes large underestimation of their biomass. Marine Ecology Progress Series, 456(1), 1-6.
Kawaguchi., Kōichi., & Shimizu, H. (1978). Taxonomy and distribution of the lanternfishes, genus Diaphus (Pisces, Myctophidae) in the western Pacific, eastern Indian Oceans and the southeast Asian seas. Bulletin of the Ocean Research Institute University of Tokyo.
Kinzer, J., & Schulz, K. (1985). Vertical distribution and feeding patterns of midwater fish in the central equatorial Atlantic. Marine biology, 85(3), 313-322.
Li, Yan., Jiao, Yan., & Browder, J.A. (2016). Modeling spatially-varying ecological relationships using geographically weighted generalized linear model: A simulation study based on longline seabird bycatch. Fisheries Research, 181, 14-24.
Loeb, V.J. (1979). Larval fishes in the zooplankton community of the North Pacific Central Gyre. Marine Biology, 53(2), 173-191.
Loeb, V.J. (1980a). Vertical distribution and development of larval fishes in the North Pacific central gyre during summer. Fish Bull, 77(4), 777-793.
Loeb, V.J. (1980b). Patterns of spatial and species abundance within the larval fish assemblage of the North Pacific central gyre during late summer. Marine Biology, 60 (2-3), 189-200.
Nafpaktitis, Basil G. (1978). Systematics and distribution of lanternfishes of the genera Lobianchia and Diaphus (Myctophidae) in the Indian Ocean: Natural History Museum of Los Angeles County.
Prince., Eric, D., & Goodyear, C.P. (2006). Hypoxia‐based habitat compression of tropical pelagic fishes. Fisheries Oceanography, 15(6), 451-464.
Pusch., Christian., Beckmann., Cora., Porteiro., Filipe Mora., & von Westernhagen, H. (2004). The influence of seamounts on mesopelagic fish communities. Archive of fishery and marine research, 51(1), 165-186.
Robertson, K.M., & Chivers, S.J. (1998). Prey occurrence in pantropical spotted dolphins, Stenella attenuata, from the eastern tropical Pacific. Oceanographic Literature Review, 1(45), 125.
Robison, B.H. (1984). Herbivory by the myctophid fish Ceratoscopelus warmingii. Marine Biology, 84(2), 119-123.
Salvanes, A.G.V., Kristoffersen, J.B., Steele, J., Thorpe, S., & Turekian, K. (2001). Mesopelagic fish (life histories, behaviour, adaptation). Encyclopedia of Ocean Sciences, Steele JH, Thorpe SA & KK Turekian (eds), Academic Press Ltd, London.
Spare, P., & Venema, S.C. (1992). Introduction to Tropical Fish Stock Assesment (Part 1). FAO Fish. Tech. Pap., Rome.
Takagi., Kaori., Yatsu., Akihiko., Moku., Masatoshi., & Sassa, C. (2006). Age and growth of lanternfishes, Symbolophorus californiensis and Ceratoscopelus warmingii (Myctophidae), in the Kuroshio–Oyashio Transition Zone. Ichthyological Research, 53(3), 281-289.
Watanabe., Hikaru., Moku., Masatoshi., Kawaguchi., Kouichi., Ishimaru., . . . Akinori. (1999). Diel vertical migration of myctophid fishes (Family Myctophidae) in the transitional waters of the western North Pacific. Fisheries Oceanography, 8(2), 115-127.
DOI: http://dx.doi.org/10.15578/jppi.22.4.2016.263-270
Jurnal Penelitian Perikanan Indonesia is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.