KONTRIBUSI BIOFLOK TERHADAP PERTUMBUHAN IKAN LELE YANG DIBERI PAKAN DENGAN TINGKAT BERBEDA

Julie Ekasari, Tri Novi Handayani, Ichsan Achmad Fauzi, Fajar Maulana, Apriana Vinasyiam

Abstract


Biomassa bioflok dalam sistem pemeliharaan ikan dapat dimanfaatkan menjadi pakan alami tambahan bagi ikan. Penelitian ini bertujuan untuk mengevaluasi kinerja pertumbuhan ikan lele Clarias gariepinus yang dipelihara menggunakan teknologi bioflok dengan tingkat pemberian pakan berbeda. Perlakuan terdiri dari tiga tingkat pemberian pakan, yaitu 5% (FR5), 3,75% (FR3,75), dan 2,5% (FR2,5). Benih ikan lele dengan panjang awal 11,92 ± 0,03 cm dan bobot awal 11,31 ± 0,11 g dipelihara dengan padat tebar 25 ekor per akuarium (500 ekor m-3) selama 42 hari. Ulangan biologis tiap perlakuan berupa 3 unit akuarium (volume air 50 L). Ikan diberi pakan 3 kali setiap hari dengan jumlah pakan sesuai perlakuan. Penambahan tepung tapioka dilakukan setiap hari untuk mencapai rasio C/N 10. Hasil penelitian menunjukkan bobot akhir menurun seiring penurunan tingkat pemberian pakan (P<0,05), seperti ditunjukkan pula laju pertumbuhan spesifik. Terdapat indikasi kontribusi bioflok terhadap kinerja pertumbuhan ikan lele berdasarkan nilai efisiensi pemanfaatan pakan dan retensi protein. Akan tetapi, tidak dapat menggantikan peran pakan eksternal. Tingkat pemberian pakan berpengaruh terhadap kinerja pertumbuhan ikan lele pada sistem bioflok.

Biofloc biomass could be used as additional natural food for fish in a biofloc-based fish culture system. This study aimed to evaluate the growth performance of African catfish, Clarias gariepinus cultured in a biofloc system fed at different feeding levels. The treatments consisted of three feeding levels; 5% (FR5), 3,75% (FR3,75), and 2,5% (FR2,5). Catfish juveniles with an initial average body length of 11,92 ± 0,03 cm and average body weight of 11,31 ± 0,11 g were reared at a density of 25 fish per aquarium (500 fish m-3) for 42 days. Each treatment had three unit aquaria (50 L water volume) as replicates. Cassava meal was added daily to reach C/N ratio of 10. The results showed that the fish’s final weight and specific growth rate were reduced, corresponding to the feeding rate. There was an indication that biofloc contributes to the fish growth performance based on the feed efficiency and protein retention level. However, biofloc could not replace the role of external feed to support the growth of African catfish.


Keywords


bioflok; efisiensi pakan; ikan lele; pertumbuhan; tingkat pakan; biofloc; catfish; feed efficiency; feeding level; growth

Full Text:

PDF

References


Abidin, Z., Junaidi, M., Paryono, Cokrowati, N., & Yuniarti, S. (2015). Pertumbuhan dan konsumsi pakan ikan lele (Clarias sp.) yang diberi pakan berbahan baku lokal. Depik, 4(1), 33-39. doi: https://doi.org/10.13170/depik.1.1.2360

AOAC. 2020. Official Method of the Association of Official Analytical Chemists. 17th ed. AOAC International, Gaithersburg, Md.

Avnimelech, Y. (2007). Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264, 140-147.

Bhatnagar, A., & Devi, P. (2019). Water quality guidelines for the management of pond fish culture. International Journal of Environment Sciences, 5(2), 1980-2009.

Biswas, A., H. Araki, T. Sakata, T. Nakamori, and K. Takii. 2019. Optimum fish meal replacement by soy protein concentrate from soymilk and phytase supplementation in diet of red sea bream, Pagrus major. Aquaculture 506:51-59. doi: 10.1016/j.aquaculture.2019.03.023

BSN. 1991. Standar Nasional Indonesia SNI 06-2480-1991: Metode pengujian kadar nitrat dalam air dengan alat spektrofotometer secara brusin sulfat. Badan Standardisasi Nasional.

BSN. 2004. Standar Nasional Indonesia SNI 06-6989.3-2004: Air dan air limbah- Bagian 3: Cara uji padatan tersuspensi total (Total Suspended Solid, TSS) secara gravimetri. Badan Standardisasi Nasional.

BSN. 2005. Standar Nasional Indonesia SNI-06-6989.30-2005: Air dan air limbah – Bagian 30 : Cara uji kadar amonia dengan spektrofotometer secara fenat. Badan Standardisasi Nasional.

Boyd, C.E. (1990). Water Quality in Ponds for Aquaculture. Alabama Aqricultural Experiment Station. Alabama: Auburn University.

Boyd, C.E. (1998). Water Quality in Ponds for Aquaculture. Alabama Agricultural Experiment Station, Alabama: Auburn University.

Daniel, N. (2018). A review on replacing fish meal in aqua feeds using plant protein sources. International Journal of Fisheries and Aquatic Studies, 6(2), 164-179.

De Schryver, P., Crab, R., Defoirdt, T., Boon, N., & Verstraete, W. (2008). The basics of bio-flocs technology: The added value for aquaculture. Aquaculture, 277(3), 125-137. doi: https://doi.org/10.1016/j.aquaculture.2008.02.019.

Deng, M., Chen, J Gou, J Hou, J., Li, D., & He, X. (2018). The effect of different carbon sources on water quality, microbial community and structure of biofloc systems. Aquaculture 482, 103-110. doi: https://doi.org/10.1016/j.aquaculture.2017.09.030.

Ebeling, J.M., Timmons, MB., & Bisogni, J.J. (2006). Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture, 257(1-4), 346-358. doi: https://doi.org/10.1016/j.aquaculture.2006.03.019.

Ekasari, J., Angela, D., Waluyo, S.H., Bachtiar, T., Surawidjaja, E.H., Bossier P., & De Schryver, P. (2014). The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals. Aquaculture, 426-427, 105-111. doi: https://doi.org/10.1016/j.aquaculture.2014.01.023.

Ekasari, J., Suprayudi, M.A, Wiyoto, W., Hazanah, R.F., Lenggara, G.S., Sulistiani, R., Alkahfi, M., & Zairin, M. (2016). Biofloc technology application in African catfish fingerling production: The effects on the reproductive performance of broodstock and the quality of eggs and larvae. Aquaculture, 464, 349-356. doi: https://doi.org/10.1016/j.aquaculture.2016.07.013.

Fauji, H., Budiardi, T., & Ekasari, J. (2018). Growth performance and robustness of African Catfish Clarias gariepinus (Burchell) in biofloc-based nursery production with different stocking densities. Aquaculture Research, 49(3), 1339-1346. doi: https://doi.org/10.1111/are.13595.

Gunadi, B. (2012). Minimalisasi Limbah Nitrogen dalam Budidaya Ikan Lele Clarias gariepinus dengan Sistem Akuakultur Berbasis Jenjang Rantai Makanan. Skripsi. Institut Pertanian Bogor.

Han, S., Zeng, L., Luo, X., Xiong, X., Wen, S., Wang, B., Chen, W., & Huang, Q. (2018). Shifts in Nitrobacter- and Nitrospira-like nitrite-oxidizing bacterial communities under long-term fertilization practices. Soil Biology and Biochemistry, 124, 118-125. doi: https://doi.org/10.1016/j.soilbio.2018.05.033.

Hargreaves, J. (2013). Biofloc Production Systems for Aquaculture. Southern Regional Aquaculture Center (SRAC) Publication No. 4503. Stoneville: United States Department of Aquaculture, National Institute of Food and Agriculture.

Karapanagiotidis, I. T., M. N. Metsoviti, E. Z. Gkalogianni, P. Psofakis, A. Asimaki, N. Katsoulas, G. Papapolymerou, and I. Zarkadas. 2022. The effects of replacing fishmeal by Chlorella vulgaris and fish oil by Schizochytrium sp. and Microchloropsis gaditana blend on growth performance, feed efficiency, muscle fatty acid composition and liver histology of gilthead seabream (Sparus aurata). Aquaculture 561doi: 10.1016/j.aquaculture.2022.738709.

Kim, S.K., Pang, Z., Seo, H.C., Cho, Y.R., Samocha, T., & Jang, I.K. (2014). Effect of bioflocs on growth and immune activity of Pacific white shrimp, Litopenaeus vannamei postlarvae. Aquaculture Research, 45(2), 362-371. doi: https://doi.org/10.1111/are.12319.

Kumar, V.S., Pandey, P.K., Anand, T., Bhuvaneswari, G.R., Dhinakaran, A., & Kumar, S. (2018). Biofloc improves water, effluent quality and growth parameters of Penaeus vannamei in an intensive culture system. Journal of Environmental Management, 215, 206-215. doi: https://doi.org/10.1016/j.jenvman.2018.03.015.

Liu, H., Li, H., Wei, H., Zhu, X., Han, D., Jin, J., Yang, Y., & Xie, S. (2019). Biofloc formation improves water quality and fish yield in a freshwater pond aquaculture system. Aquaculture, 506, 256-269. doi: https://doi.org/10.1016/j.aquaculture.2019.03.031.

Ma, B., Yang, L., Wang, Q., Yuan, Z., Wang, Y., & Peng, Y. (2017). Inactivation and adaptation of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria when exposed to free nitrous acid. Bioresource Technology, 245 (Part A), 1266-1270. doi: https://doi.org/10.1016/j.biortech.2017.08.074.

Mahyuddin, K. (2008). Panduan Lengkap Agribisnis Lele. Jakarta: Penebar Swadaya.

Mansour, A.T., & Esteban, M.A. (2017). Effects of carbon sources and plant protein levels in a biofloc system on growth performance, and the immune and antioxidant status of Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology, 64, 202-209. doi: https://doi.org/10.1016/j.fsi.2017.03.025.

Meritha, W.W., Suprayudi, M.A., & Ekasari, J. (2018). Kinerja pertumbuhan dan ketahanan benih ikan patin terhadap stres salinitas dalam sistem bioflok dengan tingkat pakan berbeda. Jurnal Akuakultur Indonesia, 17(2), 113-119.

Nguyen, H.Y.N., Trinh, T.L., Baruah, K., Lundh, T., & Kiessling, A. (2021). Growth and feed utilisation of Nile tilapia (Oreochromis niloticus) fed different protein levels in a clear-water or biofloc-RAS system. Aquaculture, 536. doi: https://doi.org/10.1016/j.aquaculture.2021.736404.

Santika, L., Diniarti, N., & Astriana, B. H. (2021). Pengaruh Penambahan Ekstrak Kunyit pada Pakan Buatan Terhadap Pertumbuhan dan Efisiensi Pemanfaatan Pakan Ikan Kakap Putih (Lates calcarifer). Jurnal Kelautan: Indonesian Journal of Marine Science and Technology, 14(1), 48-57.

Schveitzer, R., Arantes, R., Costódio, P.F.S., do Espírito Santo, C.M., Arana, L.V., Seiffert, W.Q., & Andreatta, E.R. (2013). Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacultural Engineering, 56, 59-70. doi: https://doi.org/10.1016/j.aquaeng.2013.04.006.

Sepehri, A., & Sarrafzadeh, M.H. (2019). Activity enhancement of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in activated sludge process: metabolite reduction and CO2 mitigation intensification process. Applied Water Science, 9(5), 131. doi: https://doi.org/10.1007/s13201-019-1017-6.

Wilen, B.M., Onuki, M., Hermansson, M., Lumley, D., & Mino, Y. (2008). Microbial community structure in activated sludge floc analysed by fluorescence in situ hybridization and its relation to floc stability. Water Research, 42(8-9), 2300-2308. doi: https://doi.org/10.1016/j.watres.2007.12.013.

Wu, J., He, C., van Loosdrecht, M.C.M., & Pérez, J. (2016). Selection of ammonium oxidizing bacteria (AOB) over nitrite oxidizing bacteria (NOB) based on conversion rates. Chemical Engineering Journal, 304, 953-961. doi: https://doi.org/10.1016/j.cej.2016.07.019.

Zeller, D., Cashion, T., Palomares, M., & Pauly, D. (2018). Global marine fisheries discards: A synthesis of reconstructed data. Fish and Fisheries, 19(1), 30-39. doi: https://doi.org/10.1111/faf.12233.




DOI: http://dx.doi.org/10.15578/jra.17.2.2022.59-70


Lisensi Creative Commons
Jurnal Riset Akuakultur is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats
p-ISSN 1907-6754
e-ISSN 2502-6534