MINIREVIEW ON SUSTAINABLE ANTIVIRULENCE STRATEGY FOR AQUACULTURE

Pande Gde Sasmita Julyantoro, Peter Bossier, Tom Defoirdt

Abstract


The increasing occurrence of antibiotic-resistant bacteria is one of the major challenges currently faced by the aquaculture sector. Ineffective applications of antibiotics to treat bacterial diseases, leading to the need for alternative strategies to address the problem. The antivirulence approach is a highly promising strategy that aims to stop pathogenic bacteria from causing harm to the host by disrupting their virulence mechanisms. This approach involves understanding the mechanisms of bacterial pathogenicity that can be developed into new therapeutic methods. There have been numerous advancements in combating bacterial infections, such as disrupting host-pathogen communication and inhibiting quorum sensing (QS). Antivirulence therapy offers a significant advantage as it specifically targets bacterial virulence without imposing excessive pressure on bacterial growth, reducing the risk of resistance development. This review outlines the limitations of antibiotic use and presents current insights into bacterial pathogenicity mechanisms and antivirulence strategies in aquaculture. It particularly highlights the impact of host-pathogen signaling via catecholamines, stress hormones, and QS mechanisms in certain aquaculture-pathogenic bacteria. The influence of host stress hormones on pathogen growth and virulence is noteworthy. Quorum sensing (QS) is known to regulate the expression of certain virulence genes in response to bacterial density by releasing and detecting a small signal molecule called autoinducers. This review further explains various strategies to interfere with QS mechanisms, including inhibiting signal molecule biosynthesis, using QS antagonists, chemical inactivation, or biodegradation of QS signals. These promising strategies have been considered as the first step and proof of concept of antivirulence strategies to prevent disease outbreaks in aquaculture.

Meningkatnya jumlah bakteri yang resisten terhadap antibiotik merupakan salah satu tantangan besar yang saat ini dihadapi oleh sektor akuakultur. Penerapan antibiotik yang tidak efektif untuk mengobati penyakit bakterial, menyebabkan perlunya strategi alternatif untuk mengatasi masalah tersebut. Pendekatan antivirulensi adalah strategi yang sangat menjanjikan yang bertujuan untuk menghentikan bakteri patogen dalam menyebabkan kerusakan pada inang dengan mengganggu mekanisme virulensinya. Pendekatan ini melibatkan pemahaman mekanisme patogenisitas bakteri yang dapat dikembangkan menjadi metode terapi baru. Terdapat banyak perkembangan dalam melawan infeksi bakteri, seperti mengganggu komunikasi inang-patogen dan menghambat quorum sensing (QS). Terapi antivirulensi menawarkan keuntungan yang signifikan karena secara spesifik menargetkan virulensi bakteri tanpa memberikan tekanan berlebihan pada pertumbuhan bakteri, sehingga mengurangi risiko berkembangnya resistensi. Reviu ini menguraikan keterbatasan penggunaan antibiotik dan menyajikan wawasan terkini mengenai mekanisme patogenisitas bakteri dan strategi antivirulensi dalam budidaya perikanan. Reviu ini terutama menyoroti dampak sinyal patogen inang melalui katekolamin, hormon stres, dan mekanisme QS pada bakteri patogen tertentu dalam akuakultur. Pengaruh hormon stres inang terhadap pertumbuhan dan virulensi patogen patut diperhatikan. Quorum sensing (QS) diketahui mengatur ekspresi gen virulensi tertentu sebagai respons terhadap kepadatan bakteri dengan melepaskan dan mendeteksi molekul sinyal kecil yang disebut autoinduser. Reviu ini lebih lanjut menjelaskan berbagai strategi untuk mengganggu mekanisme QS, termasuk menghambat biosintesis molekul sinyal, menggunakan antagonis QS, inaktivasi kimia, atau biodegradasi sinyal QS. Strategi yang menjanjikan ini telah dianggap sebagai langkah pertama dan bukti dari konsep strategi antivirulensi untuk mencegah wabah penyakit pada budidaya perikanan.


Keywords


antibiotic resistant; quorum quenching; quorum sensing; vibriosis; virulence factors; faktor virulensi; quorum quenching; quorum sensing; resistan antibiotik; vibriosis

Full Text:

PDF

References


Anderson, J. L., Asche, F., Garlock, T. & Chu, J. (2017). Aquaculture: its role in the future of food. World agricultural Resources and food security (Frontiers of economics and globalization, Vol. 17). Emerald Publishing Limited. https://doi.org/10.1108/S1574-871520170000017011

Avendaño-Herrera, R., Núñez, S., Barja, J. L., & Toranzo, A. E. (2008). Evolution of drug resistance and minimum inhibitory concentration to enrofloxacin in Tenacibaculum maritimum strains isolated in fish farms. Aquaculture International, 16, 1-11. https://doi.org/10.1007/s10499-007-9117-y

Baron, C. (2010). Antivirulence drugs to target bacterial secretion systems. Current Opinion in Microbiology, 13(1), 100–105. https://doi.org/10.1016/j.mib.2009.12.003

Bassler, B. L. (1999). How bacteria talk to each other: regulation of gene expression by quorum sensing. Current Opinion Microbiology, 2(1), 582-587. https://doi.org/0.1016/s1369-5274(99)00025-9

Bearson, B. L., & Bearson, S. M. D. (2008). The role of the QseC quorum-sensing sensor kinase in colonization and norepinephrine-enhanced motility of Salmonella enterica serovar Typhimurium. Microbial Pathogenesis, 44(4), 271-278. https://doi.org/10.1016/j.micpath.2007.10.001

Benneche, T., Herstad, G., Rosenberg, M., Assev, S., & Scheie, A. A. (2011). Facile synthesis of 5-(alkylidene)thiophen-2(5H)-ones. A new class of antimicrobial agents. RSC Advances, 1(2), 323–332. https://doi.org/10.1039/C1RA00254F

Bondad-Reantaso, M. G., MacKinnon, B., Karunasagar, I., Fridman, S., Alday-Sanz, V., Brun, E., Groumellec, M. L., Li, A., Surachetpong, W., Karunasagar, I., Hao, B., Dall'Occo, A., Urbani, R., & Caputo, A. (2023). Review of alternatives to antibiotic use in aquaculture. Reviews in Aquaculture, 15(4), 1421-1451. https://doi.org/10.1111/raq.12786

Brackman, G., Defoirdt, T., Miyamoto, C., Bossier, P., Van Calenbergh, S., Nelis, H., & Coyne, T. (2008). Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR. BMC Microbiology, 8, 149. https://doi.org/10.1186/1471-2180-8-149

Broughton, E. I., & Walker, D. G. (2009). Prevalence of antibiotic-resistant Salmonella in fish in Guangdong, China. Foodborne Pathogens and Disease, 6(4), 519-521. https://doi.org/10.1089/fpd.2008.0196

Burridge, L., Weis, J. S., Cabello, F., Pizarro, J., & Bostick, K. (2010). Chemical use in salmon aquaculture: A review of current practices and possible environmental effects. Aquaculture, 306(1-4), 7-23. https://doi.org/10.1016/j.aquaculture.2010.05.020

Cabello, F. C. (2006). Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environmental Microbiology, 8(7), 1137-1144. https://doi.org/10.1111/j.1462-2920.2006.01054.x

Cam, D. T. V., Hao, N. V., Dierckens, K., Defoirdt, T., Boon, N., Sorgeloos, P., & Bossier, P. (2009). Novel approach of using homoserine lactone-degrading and poly-β-hydroxybutyrate-accumulating bacteria to protect Artemia from the pathogenic effects of Vibrio harveyi. Aquaculture, 291(1-2), 23-30. https://doi.org/10.1016/j.aquaculture.2009.03.009

Cao, J. G., & Meighen, E. A. (1989). Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi. Journal of Biological Chemistry, 264(36), 21670-21676. https://doi.org/10.1016/S0021-9258(20)88238-6

Chen, X., Schauder, S., Potier, N., Van Dorsselar, A., Pelczer, I., Bassler, B. L., & Hugson, F. M. (2002). Structural identification of a bacterial quorum-sensing signal containing boron. Nature, 415, 545-549. https://doi.org/10.1038/415545a

Chen, Y., Dai, J., Morris Jr., J. G., & Johnson, J. A. (2010). Genetic analysis of the capsule polysaccharide (K antigen) and exopolysaccharide genes in pandemic Vibrio parahaemolyticus O3:K6. BMC Microbiology, 10, 274. https://doi.org/10.1186/1471-2180-10-274

Clatworthy, A. E., Pierson, E., & Hung, D. T. (2007). Targeting virulence: a new paradigm for antimicrobial therapy. Nature Chemical Biology, 3, 541-548. https://doi.org/10.1038/nchembio.2007.24

Cogan, T. A., Thomas, A. O., Rees, L. E. N., Taylor, A. H., Jepson, M. A., Williams, P. H., Ketley, J., & Humprey, T. J. (2007). Norepinephrine increases the pathogenic potential of Campylobacter jejuni. Gut, 56, 1037-1038. https://doi.org/10.1136/gut.2006.114926

Das, A., Saha, D., & Pal, J. (2009). Antimicrobial resistance and in vitro gene transfer in bacteria isolated from the ulcers of EUS-affected fish in India. Letters in Applied Microbiology, 49(1), 497-502. https://doi.org/10.1111/j.1472-765X.2009.02700.x

Danner, G. R., & Merrill, P. (2006). Disinfectants, disinfection, and biosecurity in Aquaculture. In A. D. Scarfe, C. -S. Lee, & P. J. O’Bryen (Eds.), Aquaculture biosecurity: prevention, control, and eradication of aquatic animal disease (pp.91-128). Blackwell Publishing. https://doi.org/10.1002/9780470376850.ch8

Decho, A. W., Frey, R. L. & Ferry, J. L. (2011). Chemical challenges to bacterial AHL signaling in the environment. Chemical Reviews, 111(1), 86–99. https://doi.org/10.1021/cr100311q

Defoirdt, T. (2014). Virulence mechanisms of bacterial aquaculture pathogens and antivirulence therapy for aquaculture. Reviews in Aquaculture, 6(2), 100-114. https://doi.org/10.1111/raq.12030

Defoirdt, T., Benneche, T., Brackman, G., Coenye, T., Sorgeloos, P., & Scheie, A. A. (2012). A quorum sensing-disrupting brominated thiophenone with a promising therapeutic potential to treat luminescent vibriosis. PLoS ONE, 7(7), e41788. https://doi.org/10.1371/journal.pone.0041788

Defoirdt, T., Boon, N., Bossier, P., & Verstraete, W. (2004). Disruption of bacterial quorum sensing: an unexplored strategy to fight infections in aquaculture. Aquaculture, 240(1-4), 69-88. https://doi.org/10.1016/j.aquaculture.2004.06.031

Defoirdt, T., Boon, N., Sorgeloos, P., Verstraete, W., & Bossier, P. (2007). Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. Trends in Biotechnology, 25(10), 472-479, https://doi.org/10.1016/j.tibtech.2007.08.001

Defoirdt, T., Boon, N., Sorgeloos, P., Verstraete, W., & Bossier, P. (2008). Quorum sensing and quorum quenching in Vibrio harveyi: lesson learned from in vivo work. The ISME Journal, 2, 19-26. https://doi.org/10.1038/ismej.2007.92

Defoirdt, T., Crab, R., Wood, T. K., Sorgeloos, P., Verstraete, W., & Bossier, P. (2006). Quorum sensing-disrupting brominated furanones protect the gnotobiotic brine shrimp Artemia franciscana from pathogenic Vibrio harveyi, Vibrio campbellii, and Vibrio parahaemolyticus isolates. Applied and Environmental Microbiology, 72(9), 6419–6423. https://doi.org/10.1128/AEM.00753-06

Defoirdt, T., Miyamoto, C. M., Thomas, K., Meighen, E. A., Sorgeloos, P., Verstraete, W., & Bossier, P. (2007). The natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone disrupts quorum sensing-regulated gene expression in Vibrio harveyi by decreasing the DNA-binding activity of the transcriptional protein LuxR. Environmental Microbiology, 9(10), 2486-2495. https://doi.org/10.1111/j.1462-2920.2007.01367.x

Defoirdt, T., Sorgeloos, P., & Bossier, P. (2011). Alternatives to antibiotics for the control of bacterial diseases in aquaculture. Current Opinion in Microbiology, 14(3), 251-258. https://doi.org/10.1016/j.mib.2011.03.004

Defoirdt, T., Thanh, L. D., Van Delsen, B., De Schryver, P., Sorgeloos, P., Boon, N., & Bossier, P. (2011). N-acylhomoserine lactone degrading Bacillus strains isolated from aquaculture animals. Aquaculture, 311(1-4), 258-260. https://doi.org/10.1016/j.aquaculture.2010.11.046

Dong, Y. -H., Gusti, A. R., Zhang, Q., Xu, J. -L., & Zhang, L. -H. (2002). Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Applied and Environmental Microbiology, 68(4), 1754-1759. https://doi.org/10.1128/AEM.68.4.1754-1759.2002

Dong, Y. -H., Xu, J. -L., Li, X. -Z., & Zhang, L. -H. (2000). AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proceedings of the National Academy of Sciences of the United States of America, 97(7), 3526-3531. https://doi.org/10.1073/pnas.97.7.3526

Dung, T. T., Haesebrouck, F., Tuan, N. A., Sorgeloos, P., Baele, M., & Decostere, A. (2008). Antimicrobial susceptibility pattern of Edwardsiella ictaluri isolates from natural outbreaks of bacillary necrosis of Pangasianodon hypophthalmus in Vietnam. Microbial Drug Resistance, 14(4), 311-316. https://doi.org/10.1089/mdr.2008.0848

El-Gohary, F. A., Zahran, E., El-Gawad, E. A. A., El-Gohary, A. H., Abdelhamid, F. M., El-Mleeh, A., Elmahallawy, E. K., & Elsayed, M. M. (2020). Investigation of the prevalence, virulence genes, and antibiogram of motile aeromonads isolated from Nile tilapia fish farms in Egypt and assessment of their water quality. Animals, 10(8), 1432. https://doi.org/10.3390/ani10081432

Fast, W., & Tipton, P. A. (2012). The enzymes of bacterial census and censorship. Trends in Biochemical Sciences, 37(1), 7-14. https://doi.org/10.1016/j.tibs.2011.10.001

Finlay, B. B., & Falkow, S. (1997). Common themes in microbial pathogenicity revisited. Microbiology and Molecular Biology Reviews, 61(2), 136-169. https://doi.org/10.1128/mmbr.61.2.136-169.1997

Food and Agriculture Organization. (2020). The state of world fisheries and aquaculture 2020. Sustainability in action. Food and Agriculture Organization. https://doi.org/10.4060/ca9229en

Food and Agriculture Organization. (2024). The state of world fisheries and aquaculture 2024. Blue transformation in action. Food and Agriculture Organization. https://doi.org/10.4060/cd0683en

Food and Drug Administration. (2022). Approved aquaculture drugs. 2022. https://www.fda.gov/animal-veterinary/aquaculture/approved-aquaculture-drugs

Freestone, P. (2013). Communication between bacteria and their hosts. Scientifica, 2013, 361073. https://doi.org/10.1155/2013/361073

Freestone, P. P. E., Sandrini, S. M., Haigh, R. D., & Lyte, M. (2008). Microbial endocrinology: how stress influences susceptibility to infection. Trends in Microbiology, 16(2), 55-64. https://doi.org/10.1016/j.tim.2007.11.005

Fuqua, C., Winans, S. C., & Greenberg, E. P. (1996). Census and consensus in bacterial ecosystems: The LuxR-LuxI family of quorum-sensing transcriptional regulators. Annual Review of Microbiology, 50, 727-751. https://doi.org/10.1016/j.tim.2007.11.005

Heuer, O. E., Kruse, H., Grave, K., Collignon, P., Karunasagar, I., & Angulo, F. J. (2009). Human health consequences of use of antimicrobial agents in aquaculture. Clinical Infectious Diseases, 49(8), 1248-1253. https://doi.org/10.1086/605667

Higgins, D. A., Pomianek, M. E., Kraml, C. M., Taylor, R. K., Semmelhack, M. F., & Bassler, B. L. (2007). The major Vibrio cholera autoinducer and its role in virulence factor production. Nature, 450, 883-886. https://doi.org/10.1038/nature06284

Hong, K. -W., Koh, C. -L., Sam, C. -K., Yin, W. -F., & Chan, K. -G. (2012). Quorum quenching revisited-From signals decays to signaling confusion. Sensors, 12(4), 4661-4696. https://doi.org/10.3390/s120404661

Hsieh, Y. -C., Liang, S. -M., Tsai, W. -L., Chen, Y. -H., Liu, T. -Y., & Liang, C. -M. (2003). Study of capsular polysaccharide from Vibrio parahaemolyticus. Infection and Immunity, 71(6), 3329-3336. https://doi.org/10.1128/IAI.71.6.3329-3336.2003

Irshath, A. A., Rajan, A. P., Vimal, S., Prabhakaran, V. -S., & Ganesan, R. (2023). Bacterial pathogenesis in various fish diseases: Recent advances and specific challenges in vaccine development. Vaccines, 11(2), 470. https://doi.org/10.3390/vaccines11020470

Ishida, Y., Ahmed, A. M., Mahfouz, N. B., Kimura, T., El-Khodery, S. A., Moawad, A. A., & Shimamoto, T. (2010). Molecular analysis of antimicrobial resistance in Gram-negative bacteria isolated from fish farms in Egypt. Journal of Veterinary Medical Science, 72(6), 727-734. https://doi.org/10.1292/jvms.09-0538

Jang, H. M., Kim, Y. B., Choi, S., Lee, Y., Shin, S. G., Unno, T., & Kim, Y. M. (2018). Prevalence of antibiotic resistance genes from effluent of coastal aquaculture, South Korea. Environmental Pollution, 233, 1049-1057. https://doi.org/10.1016/j.envpol.2017.10.006

Janssens, J. C. A., De Keersmaecker, S. C. J., De Vos, D. E., & Vanderleyden, J. (2008). Small molecules for interference with cell–cell communication systems in Gram-negative bacteria. Current Medicinal Chemistry, 15(21), 2144–2156. https://doi.org/10.2174/092986708785747580

Kalia, V. C. (2013). Quorum sensing inhibitors: An overview. Biotechnology Advances, 31(2), 224-245. https://doi.org/10.1016/j.biotechadv.2012.10.004

Kalia, V. C., & Purohit, H. J. (2011). Quenching of the quorum sensing system: potential antibacterial drug targets. Critical Reviews in Microbiology, 37(2), 121-40. https://doi.org/10.3109/1040841X.2010.532479

Karunasagar, I., Pai, R., Malathi, G. R., & Karunasagar, I. (1994). Mass mortality of Penaeus monodon larvae due to antibiotic-resistant Vibrio harveyi infection. Aquaculture, 128(3-4), 203- 209. https://doi.org/10.1016/0044-8486(94)90309-3

Kendall, M. M., Rasko, D. A., & Sperandio, V. (2007). Global effects of the cell-to-cell signaling molecules autoinducer-2, autoinducer-3, and epinephrine in a luxS mutant of enterohemorrhagic Escherichia coli. Infection and Immunity, 75(10), 4875-4884. https://doi.org/10.1128/IAI.00550-07

Li, X., Bossier, P., Dierckens, K., Laureau, S., & Defoirdt, T. (2015). Impact of mucin, bile salts and cholesterol on the virulence of Vibrio anguillarum towards gnotobiotic sea bass (Dicentrarchus labrax) larvae. Veterinary Microbiology, 175(1), 44-49, https://doi.org/10.1016/j.vetmic.2014.10.033

Lieke, T., Meinelt T., Hoseinifar, S. H., Pan B., Straus D. L, & Steinberg C. E. W. (2020). Sustainable aquaculture requires environmental-friendly treatment strategies for fish diseases. Reviews in Aquaculture, 12(2), 943–965. https://doi.org/10.1111/raq.12365

Lin, B., Wang, Z., Malanoski, A. P., O’Grady, E. A., Wimpee, C. F., Vuddhakul, V., Alves Jr., N., Thompson, F. L., Gomez-Gil, B., & Vora, G. J. (2010). Comparative genomic analyses identify the Vibrio harveyi genome sequenced strains BAA-116 and HY01 as Vibrio campbellii. Environmental Microbiology Reports, 2(1), 81-89. https://doi.org/10.1111/j.1758-2229.2009.00100.x

Liu, P. C., Lee, K. K., & Chen, S. N. (1997). Susceptibility of different isolates of Vibrio harveyi to antibiotics. Microbios 91(368-369), 175-180.

Liu, X., Steele, J. C., & Meng, X. -Z. (2017). Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environmental Pollution, 223, 161-169. https://doi.org/10.1016/j.envpol.2017.01.003

Lo, D. Y., Lee, Y. J., Wang, J. H., & Kuo, H. C. (2014). Antimicrobial susceptibility and genetic characterisation of oxytetracycline-resistant Edwardsiella tarda isolated from diseased eels. Veterinary Record, 175(8), 203. https://doi.org/10.1136/vr.101580

Lu, L., Li, M., Yi, G., Liao, L., Cheng, Q., Zhu, J., Zhang, B., Wang, Y., Chen, Y., & Zeng, M. (2022). Screening strategies for quorum sensing inhibitors in combating bacterial infections. Journal of Pharmaceutical Analysis, 12(1), 1-14. https://doi.org/10.1016/j.jpha.2021.03.009

Lulijwa, R., Rupia, E. J., & Alfaro, A. C. (2020). Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Reviews in Aquaculture, 12(2), 640-663. https://doi.org/10.1111/raq.12344

Lyte, M. (2014). Microbial endocrinology: Host-microbiota neuroendocrine interactions influencing brain and behavior. Gut Microbes, 5(3), 381-3899. https://doi.org/10.4161/gmic.28682

Manefield, M., Rasmussen, T. B., Hentzer, M., Andersen, J. B., Steinberg, P., Kjelleberg, S., & Givskov, M. (2002). Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology, 148(4), 1119–1127. https://doi.org/10.1099/00221287-148-4-1119

McIntosh, D., Cunningham, M., Ji, B., Fekete, F. A., Parry, E. M., Clark, S. E., Zalinger, Z. B., Gilg, I. C., Danner, G. R., Johnson, K. A., Beattie, M., & Ritchie, R. (2008). Transferable, multiple antibiotic and mercury resistance in Atlantic Canadian isolates of Aeromonas salmonicida subsp. salmonicida is associated with carriage of an IncA/C plasmid similar to the Salmonella enterica plasmid pSN254. Journal of Antimicrobial Chemotherapy, 61(6), 1221-1228. https://doi.org/10.1093/jac/dkn123

Michels, J. J., Allain, E. J., Borchardt, S. A., Hu, P., & McCoy, W. F. (2000). Degradation pathway of homoserine lactone bacterial signal molecules by halogen antimicrobials identified by liquid chromatography with photodiode array and mass spectrometric detection. Journal of Chromatography A, 898(2), 153–165. https://doi.org/10.1016/S0021-9673(00)00849-9

Miller, M. B. & Bassler, B. L. (2001). Quorum sensing in bacteria. Annual Review of Microbiology, 55, 165-199. https://doi.org/10.1146/annurev.micro.55.1.165

Miller, R. A., & Harbottle, H. (2018) Antimicrobial drug resistance in fish pathogens. Microbiology Spectrum, 6(1). https://doi.org/10.1128/microbiolspec.ARBA-0017-2017

Milton, D. L. (2006). Quorum sensing in vibrios: Complexity for diversification. International Journal of Medical Microbiology, 296(2-3), 61-71. https://doi.org/10.1016/j.ijmm.2006.01.044

Moriarty, D. J. W. (1999). Disease control in shrimp aquaculture with probiotic bacteria. In C. R. Bell, M. Brylinsky, & P. Johnson-Green (Eds.), Microbial Biosystem: New Frontiers, Proceedings of the 8th International Symposium on Microbial Ecology. Atlantic Canada Society for Microbial Ecology.

Nakano, M., Takahashi, A., Sakai, Y., Kawano, M., Harada, N., Mawatari, K., & Nakaya, Y. (2007). Catecholamine-induced stimulation of growth in Vibrio species. Letters in Applied Microbiology, 44(6), 649-653. https://doi.org/10.1111/j.1472-765X.2007.02136.x

Natrah, F. M. I., Alam, Md. I., Pawar, S., Harzevili, A. S., Nevejan, N., Boon, N., Sorgeloos, P., Bossier, P., & Defoirdt, T. (2012). The impact of quorum sensing on the virulence of Aeromonas hydrophila and Aeromonas salmonicida towards burbot (Lota lota L.) larvae. Veterinary Microbiology, 159(1-2), 77–82. https://doi.org/10.1016/j.vetmic.2012.03.014

Natrah, F. M. I., Defoirdt, T., Sorgeloos, P., & Bossier, P. (2011). Disruption of bacterial cell-to-cell communication by marine organisms and its relevance to aquaculture. Marine Biotechnology, 13, 109–126. https://doi.org/10.1007/s10126-010-9346-3

Natrah, F. M. I., Ruwandeepika, H. A. D., Pawar, S., Karunasagar, I., Sorgeloos, P., Bossier, P., & Defoirdt, T. (2011). Regulation of virulence factors by quorum sensing in Vibrio harveyi. Veterinary Microbiology, 154(1-2), 124-129. https://doi.org/10.1016/j.vetmic.2011.06.024

Nhan, D. T., Cam, D. T. V., Wille, M., Defoirdt, T., Bossier, P., & Sorgeloos, P. (2010). Quorum quenching bacteria protect Macrobrachium rosenbergii larvae from Vibrio harveyi infection. Journal of Applied Microbiology, 109(3), 1007-1016. https://doi.org/10.1111/j.1365-2672.2010.04728.x

Pande, G. S. J., Natrah, F. M. I., Sorgeloos, P., Bossier, P., & Defoirdt, T. (2013). The Vibrio campbellii quorum sensing signals have a different impact on virulence of the bacterium towards different crustacean hosts. Veterinary Microbiology, 167(3-4), 540-545. https://doi.org/10.1016/j.vetmic.2013.08.021

Pande, G. S. J., Scheie, A. A., Benneche, T., Wille, M., Sorgeloos, P., Bossier, P., & Defoirdt, T. (2013). Quorum sensing-disrupting compounds protect larvae of the giant freshwater prawn Macrobrachium rosenbergii from Vibrio harveyi infection. Aquaculture, 406-407, 121-124. https://doi.org/10.1016/j.aquaculture.2013.05.015

Pande, G. S. J., Suong, N. T., Bossier, P., & Defoirdt, T. (2014). The catecholamine stress hormones norepinephrine and dopamine increase the virulence of pathogenic Vibrio anguillarum and Vibrio campbellii. FEMS Microbiology Ecology, 90(3), 761-769. https://doi.org/10.1111/1574-6941.12432

Parsek, M.R., Val, D.L., Hanzelka, B.L., Cronan Jr., J.R., & Greenberg, E.P. (1999). Acyl homoserine-lactone quorum-sensing signal generation. Proceedings of the National Academy of Sciences, 96(8), 4360– 4365. https://doi.org/10.1073/pnas.96.8.4360

Pepi, M., & Focardi, S. (2021). Antibiotic-resistant bacteria in aquaculture and climate change: A challenge for health in the Mediterranean area. International of Journal Environmental Research and Public Health, 18(11), 5723. https://doi.org/10.3390/ijerph18115723

Preena, P. G., Swaminathan, T. R., Kumar, V. J. R., & Singh, I. S. B. (2020). Antimicrobial resistance in aquaculture: a crisis for concern. Biologia, 75,1497–1517. https://doi.org/10.2478/s11756-020-00456-4

Rasko, D. A., Moreira, C. G., Li, D. R., Reading, N. C., Ritchie, J. M., Waldor, M. K., Williams, N., Taussig, R., Wei, S., Roth, M., Hughes, D. T., Huntley, J. F., Fina, M. W., Falck, J. R., & Sperandio, V. (2008). Targeting QseC signaling and virulence for antibiotic development. Science, 321(5892), 1078–1080. https://doi.org/10.1126/science.1160354

Ruwandeepika, H. A. D., Jayaweera, T. S. P., Bhowmick, P. P., Karunasagar, I., Bossier, P., & Defoirdt, T. (2012). Pathogenesis, virulence factors and virulence regulation of vibrios belonging to the Harveyi clade. Reviews in Aquaculture, 4(1), 59-74. https://doi.org/10.1111/j.1753-5131.2012.01061.x

Saavedra, J., Grandón, M., Villalobos-González, J., Bohle, H., Bustos, P., & Mancilla, M. (2018). Isolation, functional characterization and transmissibility of p3PS10, a multidrug resistance plasmid of the fish pathogen Piscirickettsia salmonis. Frontiers Microbiology, 9, 923. https://doi.org/10.3389/fmicb.2018.00923

Sarkodie, E. K., Zhou, S., Baidoo, S. A., & Chu, W. (2019). Influences of stress hormones on microbial infections. Microbial Pathogenesis, 131, 270-276. https://doi.org/10.1016/j.micpath.2019.04.013

Scalia-Bruce, B. (2023). US FDA refuses more shrimp shipments due to presence of antibiotics and banned drug residue. https://www.seafoodsource.com/news/supply-trade

Schar, D., Klein, E. Y., Laxminarayan, R. Gilbert, M., & Van Boeckel, T. P. (2020). Global trends in antimicrobial use in aquaculture. Scientific Reports, 10, 21878 https://doi.org/10.1038/s41598-020-78849-3

Shah, S. Q. A., Cabello, F. C., L'Abée-Lund, T. M., Tomova. A., Godfrey, H. P., Buschmann, A. H., & Sørum, H. (2014). Antimicrobial resistance and antimicrobial resistance genes in marine bacteria from salmon aquaculture and non-aquaculture sites. Environmental Microbiology, 16(5), 1310-1320. https://doi.org/10.1111/1462-2920.12421

Smith, P. (2008). Antimicrobial resistance in aquaculture. Reveu Scientifique et Technique, 27(1), 243-264. https://doi.org/10.20506/RST.27.1.1799

Smith, P., & Christofilogiannis, P. (2007). Application of normalised resistance interpretation to the detection of multiple low-level resistance in strains of Vibrio anguillarum obtained from Greek fish farms. Aquaculture, 272(1-4), 223-230. https://doi.org/10.1016/j.aquaculture.2007.07.232

Sørum, H. (2006). Antimicrobial drug resistance in fish pathogens. In F. M. Aarestrup (Ed.), Antimicrobial resistance in bacteria of animal origin (pp. 213-238). ASM Press. https://doi.org/10.1128/9781555817534.ch13

Sperandio, V., Torres, A. G., Jarvis, B., Nataro, J. P., & Kaper, J .B. (2003). Bacteria-host communication: The language of hormones. Proceeding of the National Academy of Sciences, 100(15), 8951-8956. https://doi.org/10.1073/pnas.1537100100

Stentiford, G. D., Sritunyalucksana, K., Flegel, T. W., Williams, B. A. P., Withyachumnarnkul, B., Itsathitphaisarn, O., & Bass, D. (2017). New paradigms to help solve the global aquaculture disease crisis. PLoS Pathogens, 13(2), e1006160. https://doi.org/10.1371/journal.ppat.1006160

Suprapto, H., Sulmartiwi, L., & Sudarno. (2015). Detection of antibiotic residue from shrimp ponds and their environment in East Java Province, Indonesia. Aquacultura Indonesiana, 16(1), 29-32.

Suyamud, B., Chen, Y., Quyen, D. T. T., Dong, Z., Zhao, C., & Hu, J. Antimicrobial resistance in aquaculture: Occurrence and strategies in Southeast Asia. Science of the Total Environment, 907, 167942. https://doi.org/10.1016/j.scitotenv.2023.167942

Taga, M. E. & Bassler, B. L. (2003). Chemical communication among bacteria. Proceeding of the National Academy of Sciences, 100(suppl_2), 14549-14554. https://doi.org/10.1073/pnas.1934514100

Tendencia E. A., & de la Peña, L. D. (2001). Antibiotic resistance of bacteria from shrimp ponds. Aquaculture, 195(3-4), 193-204. https://doi.org/10.1016/S0044-8486(00)00570-6

Teo, J. W. P., Suwanto, A., & Poh, C. L. (2000). Novel β-lactamase genes from two environmental isolates of Vibrio harveyi. Antimicrobial Agents and Chemotherapy, 44(5), 1309-1314. https://doi.org/10.1128/aac.44.5.1309-1314.2000

Thiang, E. L., Lee, C. W., Takada, H., Seki, K., Takei, A., Suzuki, S., Wang, A., & Bong, C. W. (2021). Antibiotic residues from aquaculture farms and their ecological risks in Southeast Asia: a case study from Malaysia. Ecosystem Health and Sustainability, 7(1), 1926337. https://doi.org/10.1080/20964129.2021.1926337

Tinh, T. N. T., Gunasekara, R. A. Y. S. A., Boon, N., Dierckens, K., Sorgeloos, P., & Bossier, P. (2007). N-acyl homoserine lactone-degrading microbial enrichment cultures isolated from Penaeus vannamei shrimp gut and their probiotic properties in Brachionus plicatilis cultures. FEMS Microbiology Ecology, 62(1), 45-53. https://doi.org/10.1111/j.1574-6941.2007.00378.x

Verbrugghe, E., Boyen, F., Gaastra, W., Bekhuis, L., Leyman, B., Parys, A. V., Haesebrouck, F., & Pasmans, F. (2012). The complex interplay between stress and bacterial infections in animals. Veterinary Microbiology, 155(2-4), 115-127. https://doi.org/10.1016/j.vetmic.2011.09.012

Vicente-Santos, A., Willink, B., Nowak, K., Civitello, D. J. & Gillespie, T. R. (2023). Host–pathogen interactions under pressure: A review and meta-analysis of stress-mediated effects on disease dynamics. Ecology Letters, 26(11), 2003–2020. https://doi.org/10.1111/ele.14319

Wang, X., Wang, Q., Yang, M., Xiao, J., Liu, Q., Wu, H., & Zhang, Y., (2011). QseBC flagellar motility, fimbrial hemagglutination and intracellular virulence in fish pathogen Edwardsiella tarda. Fish & Shellfish Immunology, 30(3), 944-953. https://doi.org/10.1016/j.fsi.2011.01.019

Whitehead, N. A., Barnard, A. M. L., Slater, H., Simpson, N. J. L., & Salmond, G. P. C. (2001). Quorum-sensing in Gram-negative bacteria. FEMS Microbiology Reviews, 25(4), 365– 404. https://doi.org/10.1111/j.1574-6976.2001.tb00583.x

Yang, Q., Anh, N. D. Q., Bossier, P., & Defoirdt, T. (2014). Norepinephrine and dopamine increase motility, biofilm formation, and virulence of Vibrio harveyi. Frontiers in Microbiology, 5, 584. https://doi.org/10.3389/fmicb.2014.00584

Yang, Q., & Defoirdt, T. (2015). Quorum sensing positively regulates flagellar motility in pathogenic Vibrio harveyi. Environmental Microbiology, 17(4), 960–968. https://doi.org/10.1111/1462-2920.12420

Zhao, C., Jin, H., Xu, F., Zheng, G., Li, L., Lin, J., Shi, X., Shan, Q., Zhou, H., Wang, B., & Yin, Y. (2024). Determination of teicoplanin and ramoplanin residues in aquaculture products by a modified QuEChERS method combined with UPLC-MS/MS. Microchemical Journal, 199, 109942. https://doi.org/10.1016/j.microc.2024.109942

Zhou, L., Zhang, Y., Ge, Y., Zhu, X., & Pan, J. (2020). Regulatory mechanisms and promising applications of quorum sensing-inhibiting agents in control of bacterial biofilm formation. Frontiers in Microbiology, 11, 589640. https://doi.org/doi10.3389/fmicb.2020.589640

Zhou, S., Dong, J., Liu, Y., Yang, Q., Xu, N., Yang, Y., Gu, Z., & Ai, X. (2020). Anthelmintic efficacy of 35 herbal medicines against a monogenean parasite, Gyrodactylus kobayashii, infecting goldfish (Carassius auratus). Aquaculture, 521, 734992. https://doi.org/10.1016/j.aquaculture.2020.734992




DOI: http://dx.doi.org/10.15578/jra.19.2.2024.157-176


Lisensi Creative Commons
Jurnal Riset Akuakultur is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats
p-ISSN 1907-6754
e-ISSN 2502-6534