ANALYSIS OF ALUMINUM SAND CASTING OF A THREE-BLADED PROPELLER FOR FISHING BOATS WITH A DIRECT GATING SYSTEM

Mega Lazuardi Umar, Agung Fauzi Hanafi

Abstract


This research aims to simulate and verify the aluminum material casting process using the sand casting method with a top gating system for traditional fishing boats. Numerical simulations were conducted to predict molten metal flow, solidification, and potential casting defects, specifically shrinkage porosity. Using the simulation method, the shrinkage porosity area was observed at the central point of the propeller shaft and alsoat the tips of the propeller blades. Consistent results were also verified by experiments. To improve the casting results, direct gating casting recommendations are presented but still show shrinkage porosity in the riser, shaft, and propeller blade tips. However, when compared to the results before the improvement, a reduction in shrinkage defects is evident. This research is expected to provide a better understanding of the optimization of gating system design in propeller casting using the sand casting method, thereby improving product quality and reducing the potential for defects in propellers used for traditional fishing boats.

Keywords


Aluminum, casting, propeller, simulation

Full Text:

PDF

References


Akhyar, I., Hasanuddin, M., Ibrahim, A., Farhan, Z., & Jalil, Z. (2022). Evaluation Of Cast Defects in Ship Propeller of Recycled Aluminum Alloy. Metalurgija, 61(2), 309-312.

Campbell, J. (2015). Complete casting handbook: Metal casting processes, metallurgy, techniques and design (Second Edition, pp. 1-1028).

Chakravarti, S., & Sen, S. (2023). An investigation on the solidification and porosity prediction in aluminium casting process. J. Eng. Appl. Sci., 70(21).

Chen, Z., Li, Y., Zhao, F., Li, S., & Zhang, J. (2022). Progress in numerical simulation of casting process. Measurement and Control, 55, 257-264.

Choudhari, C. M., Narkhede, B. E., & Mahajan, S. E. (2014). Casting Design and Simulation of Cover Plate using AutoCAST-X Software for Defect Minimization with Experimental Validation. Procedia Materials Science, 6, 786-797.

Endrawan, T., Dionisius, F., Sifa, A., & Kusuma., B. H. (2019). Analisis Perbedaan Tinggi Sprue Pada Top Gating System Untuk Pengecoran Propeller Yang Bermaterial Paduan Alumunium Dari Limbah Propeller Perahu. Prosiding Industrial Research Workshop and National Seminar, 28-35.

European Standard EN 1706. Equivalent Standards for Die Casting: USA AA 383.0 Japan JIS ADC12Z.Properties originally computed with Computherm/Scheil method.

Ezanno, A., Doudard, C., Moyne, S., Calloch, S., Millot, T., & Bellèvre, D. (2015). Validation of a high-cycle fatigue model via calculation/test comparisons at structural scale: Application to copper alloy sand-cast ship propellers. International Journal of Fatigue, 74, 38-45.

Fachrie, Y. (2015). Rancang Bangun Dan Analisa Simulasi Sistem Saluran Dan Penambah (Riser) Terhadap Cacat Penyusutan (Shrinkage) Pada Pembuatan Rumah Transmisi Mobil Listrik Brajawahana Dengan Pengecoran Pasir (Sand Casting) (Tugas Akhir). Fakultas Teknologi Industri Institut Teknologi Sepuluh November Surabaya.

Gašpár, Š., Majerník, J., & Kolínský, J. (2021). Analysis of Causes of Porosity Change of Castings under the Influence of Variable Biscuit Height in the Filling Chamber. Materials, 14(22), 6827.

Hirt, C. W., & Nichols, B. D. (1981). Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. Journal of Computational Physics, 39, 201-225.

Ike Widyastuti. (2008). VARIASI TEMPERATUR PEMANASAN AWAL CETAKAN PADA PENGECORAN Al-Si BEKAS. TRANSMISI, IV(2), 441-450.

Jin, Z., Wang, P., Dong, H., An, X., & Xia, H. (2023). Numerical prediction of ducted propeller performance based on a BEM–RANS coupling method. Ocean Engineering, 271, 113761.

Karim, I, J, A., Umar, K., & Asri, S. (2021). Analisa Cacat Coran Pembuatan Propeller Dengan Metode Sand Casting. Jurnal Dinamika, 5, 1-5.

Kumar, R., Maurya, S. K., Choubey, M., et al. (2024). Optimization and empirical studies of riser design in sand casting process using different mould properties. Int J Interact Des Manuf, 18, 3473–3484.

Małysza, M., Zuczek, R., Wilk-Kołodziejczyk, D., Ja´skowiec, K., Głowacki, M., Długosz, P., & Dudek, P. (2022). Technological Optimization of the Stirrup Casting Process with the Use of Computer Simulations. Materials, 15(19), 6781.

Mehta, N., Gohil, A., & Doshi, S. J. (2018). Innovative Support System for Casting Defect Analysis –A Need of Time. Materials Today: Proceedings, 5, 4156-4161.

Rajkumar, I., & Rajini, N. (2021). Metal casting modeling software for small scale enterprises to improve efficacy and accuracy. Mater. Today Proc., 46, 7866–7870.

Shreyash, G., Aditya, P., Shashank, S., & Dheeraj, A. (2020). Performance Analysis and Enhancement of Marine Propeller. International Journal of Engineering Research and, V9.




DOI: http://dx.doi.org/10.15578/aj.v7i1.15647

Refbacks

  • There are currently no refbacks.




Public Services

 


Citation

           

Pusat Penelitian dan Pengabdian Kepada Masyarakat
Politeknik Kelautan dan Perikanan Dumai

Jl. Wan Amir No. 1, Kel. Pangkalan Sesai, Kec. Dumai Barat, Kota Dumai

Telp/Fax: (0765) 4300443

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats