PEMODELAN DAERAH POTENSI PENANGKAPAN IKAN TUNA MADIDIHANG MENGGUNAKAN GENERALIZED ADDITIVE MODEL DI SAMUDRA HINDIA BAGIAN TENGGARA

Asep Saepulloh, Debora Christi Simamora, Anninda Sabina, Al Fajar Alam, I Nyoman Radiarta

Abstract


Ikan tuna madidihang (Thunnus albacares) merupakan salah satu komoditas ekspor unggulan Indonesia yang memiliki nilai ekonomi tinggi dan tersebar luas di perairan tropis dan subtropis, termasuk Samudra Hindia bagian tenggara. Untuk menjaga keberlanjutan stok dan efektivitas penangkapan, diperlukan pendekatan ilmiah dalam mengidentifikasi habitat potensial spesies ini secara spasial dan temporal. Penelitian ini bertujuan untuk mengembangkan model estimasi daerah potensial penangkapan ikan tuna madidihang menggunakan Generalized Additive Model (GAM), dengan memanfaatkan data hasil tangkapan rawai tuna dan parameter oseanografi (suhu permukaan laut dan klorofil-a) dari layanan Marine Copernicus. Model dibangun berdasarkan data tahun 2023 dan divalidasi dengan data lingkungan tahun 2024. Hasil menunjukkan bahwa SPL dan CHL berpengaruh signifikan terhadap nilai Catch Per Unit Effort (p < 0.01), dengan model terbaik menjelaskan 21,2% deviasi data dan nilai koefisien determinasi R² sebesar 0.7038. Visualisasi spasial memperlihatkan bahwa habitat potensial tuna madidihang berada pada wilayah dengan suhu 28 – 29°C dan konsentrasi klorofil-a 0.1 – 0.3 mg/m³. Temuan ini menunjukkan bahwa model GAM dapat secara efektif mengidentifikasi pola spasial dan temporal habitat tuna, serta dapat digunakan sebagai alat bantu pengambilan keputusan dalam pengelolaan perikanan yang adaptif dan berbasis data.

Keywords


CPUE, daerah potensi, GAM, klorofil-a, madidihang, suhu

Full Text:

PDF

References


Bellido, J. M., Brown, A. M., Valavanis, V. D., Giráldez, A., Pierce, G. J., Iglesias, M., & Palialexis, A. (2008). Identifying essential fish habitat for small pelagic species in Spanish Mediterranean waters. Essential Fish Habitat Mapping in the Mediterranean, 171-184. https://doi.org/10.1007/978-1-4020-9141-4_13

De Lima, R. F., Sampaio, H., Dunn, J. C., Cabinda, G., Fonseca, R., Oquiongo, G., Oquiongo, J., Samba, S., Santana, A., Soares, E., Viegas, L., Ward-Francis, A., Costa, T. C., Palmeirim, J., & Buchanan, G. M. (2017). Distribution and habitat associations of the critically endangered bird species of São Tomé Island (Gulf of Guinea). Bird Conservation International, 27(4), 455-469. https://doi.org/10.1017/S0959270916000241

Dell, J., Wilcox, C., & Hobday, A. J. (2011). Estimation of yellowfin tuna (Thunnus albacares) habitat in waters adjacent to Australia’s East Coast: making the most of commercial catch data. Fisheries Oceanography, 20(5), 383-396. https://doi.org/10.1111/j.1365-2419.2011.00591.x

Duffy, L. M., Kuhnert, P. M., Pethybridge, H. R., Young, J. W., Olson, R. J., Logan, J. M., Goñi, N., Romanov, E., Allain, V., Staudinger, M. D., Abecassis, M., Choy, C. A., Hobday, A. J., Simier, M., Galvan-Magaña, F., Potier, M., & Ménard, F. (2017). Global trophic ecology of yellowfin, bigeye, and albacore tunas: understanding predation on micronekton communities at ocean-basin scales. Deep Sea Research Part II: Topical Studies in Oceanography, 140, 55-73. https://doi.org/10.1016/j.dsr2.2017.03.003

Gaertner, D., Hallier, J.P., (2015). Tag shedding by tropical tunas in the Indian Ocean and other factors affecting the shedding rate. Fish. Res. 163, 98–105. https://doi.org/10.1016/j.fishres.2014.02.025

Goñi, N., Didouan, C., Arrizabalaga, H., Chifflet, M., Arregui, I., Goikoetxea, N., & Santiago, J. (2015). Effect of oceanographic parameters on daily albacore catches in the Northeast Atlantic. Deep Sea Research Part II: Topical Studies in Oceanography, 113, 73-80. https://doi.org/10.1016/j.dsr2.2015.01.012

Guevara, L., Gerstner, B. E., Kass, J. M., & Anderson, R. P. (2018). Toward ecologically realistic predictions of species distributions: A cross‐time example from tropical montane cloud forests. Global change biology, 24(4), 1511-1522. https://doi.org/10.1111/gcb.13992

Gulland, J. A., (1969). Manual Of Methods For Fish Stock Assessment. Rome (IT) : Fishery Resources and Exploitation Division.

Hollowed, A. B., Barbeaux, S. J., Cokelet, E. D., Farley, E., Kotwicki, S., Ressler, P. H., Spital, C., & Wilson, C. D. (2012). Effects of climate variations on pelagic ocean habitats and their role in structuring forage fish distributions in the Bering Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 65, 230-250. https://doi.org/10.1016/j.dsr2.2012.02.008

Hoshino, E., Hillary, R., Davies, C., Satria, F., Sadiyah, L., Ernawati, T., & Proctor, C. (2020). Development of pilot empirical harvest strategies for tropical tuna in Indonesian archipelagic waters: Case studies of skipjack and yellowfin tuna. Fisheries Research, 227, 105539. https://doi.org/10.1016/j.fishres.2020.105539

Hu, C., Harrison, D. P., Hinton, M. G., Siegrist, Z. C., & Kiefer, D. A. (2018). Habitat analysis of the commercial tuna of the Eastern Tropical Pacific Ocean. Fisheries Oceanography, 27(5), 417-434. https://doi.org/10.1111/fog.12263v

Hua, C., Zhu, Q., Shi, Y., & Liu, Y. (2019). Comparative analysis of CPUE standardization of Chinese Pacific saury (Cololabis saira) fishery based on GLM and GAM. Acta Oceanologica Sinica, 38(10), 100-110. https://doi.org/10.1007/s13131-019-1486-3

Hsu, T. Y., Chang, Y., Lee, M. A., Wu, R. F., & Hsiao, S. C. (2021). Predicting skipjack tuna fishing grounds in the western and central Pacific Ocean based on high-spatial-temporal-resolution satellite data. Remote Sensing, 13(5), 861. https://doi.org/10.3390/rs13050861

Lan, K. W., Chang, Y. J., & Wu, Y. L. (2020). Influence of oceanographic and climatic variability on the catch rate of yellowfin tuna (Thunnus albacares) cohorts in the Indian Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 175, 104681. https://doi.org/10.1016/j.dsr2.2019.104681

Lan, K. W., Evans, K., & Lee, M. A., (2013). Effects of climate variability on the distribution and fishing conditions of yellowfin tuna (Thunnus albacares) in the western Indian Ocean. Climatic Change 119, 63–77. https://doi.org/10.1007/s10584-012-0637-8

Lan, K. W., Lee, M. A., Chou, C. P., & Vayghan, A. H. (2018). Association between the interannual variation in the oceanic environment and catch rates of bigeye tuna (Thunnus obesus) in the Atlantic Ocean. Fisheries Oceanography, 27(5), 395-407. https://doi.org/10.1111/fog.12259

Lan, K. W., Nishida, T., Lee, M. A., Lu, H. J., Huang, H. W., Chang, S. K., & Lan, Y. C. (2012). Influence of the marine environment variability on the yellowfin tuna (Thunnus albacares) catch rate by the Taiwanese longline fishery in the Arabian Sea, with special reference to the high catch in 2004. Journal of Marine Science and Technology, 20(5), 5. DOI: 10.6119/JMST-011-0506-1

Lan, K. W., Shimada, T., Lee, M. A., Su, N. J., & Chang, Y. (2017). Using remote-sensing environmental and fishery data to map potential yellowfin tuna habitats in the tropical Pacific Ocean. Remote Sensing, 9(5), 444. https://doi.org/10.3390/rs9050444

Maddumage, U. S., Rajapaksha, J., & Gunatilake, J. (2023). Effect of ocean circulation and chlorophyll-a concentration on yellowfin tuna catch rates in Sri Lankan logline fishery. Ceylon Journal of Science, 52(3). https://doi.org/10.4038/cjs.v52i3.8208

Maunder, M. N., & Punt, A. E. (2004). Standardizing catch and effort data: a review of recent approaches. Fisheries research, 70(2-3), 141-159. https://doi.org/10.1016/j.fishres.2004.08.002

Memtsas, G. I., Lazarina, M., Sgardelis, S. P., Petanidou, T., & Kallimanis, A. S. (2022). What plant–pollinator network structure tells us about the mechanisms underlying the bidirectional biodiversity productivity relationship?. Basic and Applied Ecology, 63, 49-58. https://doi.org/10.1016/j.baae.2022.05.006

Mondal, S., Wang, Y. C., Lee, M. A., Weng, J. S., & Mondal, B. K. (2022). Ensemble three-dimensional habitat modeling of Indian Ocean immature albacore tuna (Thunnus alalunga) using remote sensing data. Remote Sensing, 14(20), 5278. https://doi.org/10.3390/rs14205278

Murase, H., Nagashima, H., Yonezaki, S., Matsukura, R., & Kitakado, T. (2009). Application of a generalized additive model (GAM) to reveal relationships between environmental factors and distributions of pelagic fish and krill: a case study in Sendai Bay, Japan. ICES Journal of Marine Science, 66(6), 1417-1424. https://doi.org/10.1093/icesjms/fsp105

Radiarta, I. N., Saitoh, S. I., & Miyazono, A. (2008). GIS-based multi-criteria evaluation models for identifying suitable sites for Japanese scallop (Mizuhopecten yessoensis) aquaculture in Funka Bay, southwestern Hokkaido, Japan. Aquaculture, 284(1-4), 127-135. https://doi.org/10.1016/j.aquaculture.2008.07.048

Sambah, A. B., Muamanah, A., Harlyan, L. I., Lelono, T. D., Iranawati, F., & Sartimbul, A. (2021). Sea surface temperature and chlorophyll-a distribution from Himawari satellite and its relation to yellowfin tuna in the Indian Ocean. Aquaculture, Aquarium, Conservation & Legislation, 14(2), 897-909.

Steinke, S., Prange, M., Feist, C., Groeneveld, J., & Mohtadi, M. (2014). Upwelling variability off southern Indonesia over the past two millennia. Geophysical Research Letters, 41(21), 7684-7693. https://doi.org/10.1002/2014GL061450

Supriyadi, E., & Hidayat, R. (2020). Identification of upwelling area of the western territorial waters of Indonesia from 2000 to 2017. The Indonesian Journal of Geography, 52(1), 105-111. DOI: http://dx.doi.org/10.22146/ijg.50641

Swartzman, G., Silverman, E., & Williamson, N. (1995). Relating trends in walleye pollock (Theragra chalcogramma) abundance in the Bering Sea to environmental factors. Canadian Journal of Fisheries and Aquatic Sciences, 52(2), 369-380. https://doi.org/10.1139/f95-039

Torrejón-Magallanes, J., Grados, D., & Lau-Medrano, W. (2019). Spatio-temporal distribution modeling of dolphinfish (Coryphaena hippurus) in the Pacific Ocean off Peru using artisanal longline fishery data. Deep Sea Research Part II: Topical Studies in Oceanography, 169, 104665. https://doi.org/10.1016/j.dsr2.2019.104665

Velasco, J. A., & González-Salazar, C. (2019). Akaike information criterion should not be a “test” of geographical prediction accuracy in ecological niche modelling. Ecological Informatics, 51, 25-32. https://doi.org/10.1016/j.ecoinf.2019.02.005

Wei, X., Liao, X., Zhan, H., & Liu, H. (2012). Estimates of potential new production in the Java-Sumatra upwelling system. Chinese journal of oceanology and limnology, 30(6), 1063-1067. https://doi.org/10.1007/s00343-012-1281-x

Wiryawan, B., Loneragan, N., Mardhiah, U., Kleinertz, S., Wahyuningrum, P. I., Pingkan, J., Wildan, Timur, P. S., Duggan, D., & Yulianto, I. (2020). Catch per unit effort dynamic of yellowfin tuna related to sea surface temperature and chlorophyll in Southern Indonesia. Fishes, 5(3), 28. https://doi.org/10.3390/fishes5030028

Zainuddin, M., Kiyofuji, H., Saitoh, K., & Saitoh, S. I. (2006). Using multi-sensor satellite remote sensing and catch data to detect ocean hot spots for albacore (Thunnus alalunga) in the northwestern North Pacific. Deep Sea Research Part II: Topical Studies in Oceanography, 53(3-4), 419-431. https://doi.org/10.1016/j.dsr2.2006.01.007

Zainuddin, M., Nelwan, A., Farhum, S. A., Hajar, M. A. I., Kurnia, M. S. (2013). Characterizing potential fishing zone of skipjack tuna during the southeast monsoon in the Bone Bay-Flores Sea using remotely sensed oceanographic data. IntlJ Geosci 4(1): 259-266. DOI: 10.4236/ijg.2013.41a023.

Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., Smith, G. M., (2009). Mixed Effect Models and Extension in Ecology With R. New Yardyork (US): Springer.




DOI: http://dx.doi.org/10.15578/bawal.17.2.2025.77%20-%2087


Creative Commons License
Bawal Widya Riset Perikanan Tangkap is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats
p-ISSN 1907-8226
e-ISSN 2502-6410