PEMODELAN DAERAH POTENSI PENANGKAPAN IKAN TUNA MADIDIHANG MENGGUNAKAN GENERALIZED ADDITIVE MODEL DI SAMUDRA HINDIA BAGIAN TENGGARA
Abstract
Keywords
Full Text:
PDFReferences
Bellido, J. M., Brown, A. M., Valavanis, V. D., Giráldez, A., Pierce, G. J., Iglesias, M., & Palialexis, A. (2008). Identifying essential fish habitat for small pelagic species in Spanish Mediterranean waters. Essential Fish Habitat Mapping in the Mediterranean, 171-184. https://doi.org/10.1007/978-1-4020-9141-4_13
De Lima, R. F., Sampaio, H., Dunn, J. C., Cabinda, G., Fonseca, R., Oquiongo, G., Oquiongo, J., Samba, S., Santana, A., Soares, E., Viegas, L., Ward-Francis, A., Costa, T. C., Palmeirim, J., & Buchanan, G. M. (2017). Distribution and habitat associations of the critically endangered bird species of São Tomé Island (Gulf of Guinea). Bird Conservation International, 27(4), 455-469. https://doi.org/10.1017/S0959270916000241
Dell, J., Wilcox, C., & Hobday, A. J. (2011). Estimation of yellowfin tuna (Thunnus albacares) habitat in waters adjacent to Australia’s East Coast: making the most of commercial catch data. Fisheries Oceanography, 20(5), 383-396. https://doi.org/10.1111/j.1365-2419.2011.00591.x
Duffy, L. M., Kuhnert, P. M., Pethybridge, H. R., Young, J. W., Olson, R. J., Logan, J. M., Goñi, N., Romanov, E., Allain, V., Staudinger, M. D., Abecassis, M., Choy, C. A., Hobday, A. J., Simier, M., Galvan-Magaña, F., Potier, M., & Ménard, F. (2017). Global trophic ecology of yellowfin, bigeye, and albacore tunas: understanding predation on micronekton communities at ocean-basin scales. Deep Sea Research Part II: Topical Studies in Oceanography, 140, 55-73. https://doi.org/10.1016/j.dsr2.2017.03.003
Gaertner, D., Hallier, J.P., (2015). Tag shedding by tropical tunas in the Indian Ocean and other factors affecting the shedding rate. Fish. Res. 163, 98–105. https://doi.org/10.1016/j.fishres.2014.02.025
Goñi, N., Didouan, C., Arrizabalaga, H., Chifflet, M., Arregui, I., Goikoetxea, N., & Santiago, J. (2015). Effect of oceanographic parameters on daily albacore catches in the Northeast Atlantic. Deep Sea Research Part II: Topical Studies in Oceanography, 113, 73-80. https://doi.org/10.1016/j.dsr2.2015.01.012
Guevara, L., Gerstner, B. E., Kass, J. M., & Anderson, R. P. (2018). Toward ecologically realistic predictions of species distributions: A cross‐time example from tropical montane cloud forests. Global change biology, 24(4), 1511-1522. https://doi.org/10.1111/gcb.13992
Gulland, J. A., (1969). Manual Of Methods For Fish Stock Assessment. Rome (IT) : Fishery Resources and Exploitation Division.
Hollowed, A. B., Barbeaux, S. J., Cokelet, E. D., Farley, E., Kotwicki, S., Ressler, P. H., Spital, C., & Wilson, C. D. (2012). Effects of climate variations on pelagic ocean habitats and their role in structuring forage fish distributions in the Bering Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 65, 230-250. https://doi.org/10.1016/j.dsr2.2012.02.008
Hoshino, E., Hillary, R., Davies, C., Satria, F., Sadiyah, L., Ernawati, T., & Proctor, C. (2020). Development of pilot empirical harvest strategies for tropical tuna in Indonesian archipelagic waters: Case studies of skipjack and yellowfin tuna. Fisheries Research, 227, 105539. https://doi.org/10.1016/j.fishres.2020.105539
Hu, C., Harrison, D. P., Hinton, M. G., Siegrist, Z. C., & Kiefer, D. A. (2018). Habitat analysis of the commercial tuna of the Eastern Tropical Pacific Ocean. Fisheries Oceanography, 27(5), 417-434. https://doi.org/10.1111/fog.12263v
Hua, C., Zhu, Q., Shi, Y., & Liu, Y. (2019). Comparative analysis of CPUE standardization of Chinese Pacific saury (Cololabis saira) fishery based on GLM and GAM. Acta Oceanologica Sinica, 38(10), 100-110. https://doi.org/10.1007/s13131-019-1486-3
Hsu, T. Y., Chang, Y., Lee, M. A., Wu, R. F., & Hsiao, S. C. (2021). Predicting skipjack tuna fishing grounds in the western and central Pacific Ocean based on high-spatial-temporal-resolution satellite data. Remote Sensing, 13(5), 861. https://doi.org/10.3390/rs13050861
Lan, K. W., Chang, Y. J., & Wu, Y. L. (2020). Influence of oceanographic and climatic variability on the catch rate of yellowfin tuna (Thunnus albacares) cohorts in the Indian Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 175, 104681. https://doi.org/10.1016/j.dsr2.2019.104681
Lan, K. W., Evans, K., & Lee, M. A., (2013). Effects of climate variability on the distribution and fishing conditions of yellowfin tuna (Thunnus albacares) in the western Indian Ocean. Climatic Change 119, 63–77. https://doi.org/10.1007/s10584-012-0637-8
Lan, K. W., Lee, M. A., Chou, C. P., & Vayghan, A. H. (2018). Association between the interannual variation in the oceanic environment and catch rates of bigeye tuna (Thunnus obesus) in the Atlantic Ocean. Fisheries Oceanography, 27(5), 395-407. https://doi.org/10.1111/fog.12259
Lan, K. W., Nishida, T., Lee, M. A., Lu, H. J., Huang, H. W., Chang, S. K., & Lan, Y. C. (2012). Influence of the marine environment variability on the yellowfin tuna (Thunnus albacares) catch rate by the Taiwanese longline fishery in the Arabian Sea, with special reference to the high catch in 2004. Journal of Marine Science and Technology, 20(5), 5. DOI: 10.6119/JMST-011-0506-1
Lan, K. W., Shimada, T., Lee, M. A., Su, N. J., & Chang, Y. (2017). Using remote-sensing environmental and fishery data to map potential yellowfin tuna habitats in the tropical Pacific Ocean. Remote Sensing, 9(5), 444. https://doi.org/10.3390/rs9050444
Maddumage, U. S., Rajapaksha, J., & Gunatilake, J. (2023). Effect of ocean circulation and chlorophyll-a concentration on yellowfin tuna catch rates in Sri Lankan logline fishery. Ceylon Journal of Science, 52(3). https://doi.org/10.4038/cjs.v52i3.8208
Maunder, M. N., & Punt, A. E. (2004). Standardizing catch and effort data: a review of recent approaches. Fisheries research, 70(2-3), 141-159. https://doi.org/10.1016/j.fishres.2004.08.002
Memtsas, G. I., Lazarina, M., Sgardelis, S. P., Petanidou, T., & Kallimanis, A. S. (2022). What plant–pollinator network structure tells us about the mechanisms underlying the bidirectional biodiversity productivity relationship?. Basic and Applied Ecology, 63, 49-58. https://doi.org/10.1016/j.baae.2022.05.006
Mondal, S., Wang, Y. C., Lee, M. A., Weng, J. S., & Mondal, B. K. (2022). Ensemble three-dimensional habitat modeling of Indian Ocean immature albacore tuna (Thunnus alalunga) using remote sensing data. Remote Sensing, 14(20), 5278. https://doi.org/10.3390/rs14205278
Murase, H., Nagashima, H., Yonezaki, S., Matsukura, R., & Kitakado, T. (2009). Application of a generalized additive model (GAM) to reveal relationships between environmental factors and distributions of pelagic fish and krill: a case study in Sendai Bay, Japan. ICES Journal of Marine Science, 66(6), 1417-1424. https://doi.org/10.1093/icesjms/fsp105
Radiarta, I. N., Saitoh, S. I., & Miyazono, A. (2008). GIS-based multi-criteria evaluation models for identifying suitable sites for Japanese scallop (Mizuhopecten yessoensis) aquaculture in Funka Bay, southwestern Hokkaido, Japan. Aquaculture, 284(1-4), 127-135. https://doi.org/10.1016/j.aquaculture.2008.07.048
Sambah, A. B., Muamanah, A., Harlyan, L. I., Lelono, T. D., Iranawati, F., & Sartimbul, A. (2021). Sea surface temperature and chlorophyll-a distribution from Himawari satellite and its relation to yellowfin tuna in the Indian Ocean. Aquaculture, Aquarium, Conservation & Legislation, 14(2), 897-909.
Steinke, S., Prange, M., Feist, C., Groeneveld, J., & Mohtadi, M. (2014). Upwelling variability off southern Indonesia over the past two millennia. Geophysical Research Letters, 41(21), 7684-7693. https://doi.org/10.1002/2014GL061450
Supriyadi, E., & Hidayat, R. (2020). Identification of upwelling area of the western territorial waters of Indonesia from 2000 to 2017. The Indonesian Journal of Geography, 52(1), 105-111. DOI: http://dx.doi.org/10.22146/ijg.50641
Swartzman, G., Silverman, E., & Williamson, N. (1995). Relating trends in walleye pollock (Theragra chalcogramma) abundance in the Bering Sea to environmental factors. Canadian Journal of Fisheries and Aquatic Sciences, 52(2), 369-380. https://doi.org/10.1139/f95-039
Torrejón-Magallanes, J., Grados, D., & Lau-Medrano, W. (2019). Spatio-temporal distribution modeling of dolphinfish (Coryphaena hippurus) in the Pacific Ocean off Peru using artisanal longline fishery data. Deep Sea Research Part II: Topical Studies in Oceanography, 169, 104665. https://doi.org/10.1016/j.dsr2.2019.104665
Velasco, J. A., & González-Salazar, C. (2019). Akaike information criterion should not be a “test” of geographical prediction accuracy in ecological niche modelling. Ecological Informatics, 51, 25-32. https://doi.org/10.1016/j.ecoinf.2019.02.005
Wei, X., Liao, X., Zhan, H., & Liu, H. (2012). Estimates of potential new production in the Java-Sumatra upwelling system. Chinese journal of oceanology and limnology, 30(6), 1063-1067. https://doi.org/10.1007/s00343-012-1281-x
Wiryawan, B., Loneragan, N., Mardhiah, U., Kleinertz, S., Wahyuningrum, P. I., Pingkan, J., Wildan, Timur, P. S., Duggan, D., & Yulianto, I. (2020). Catch per unit effort dynamic of yellowfin tuna related to sea surface temperature and chlorophyll in Southern Indonesia. Fishes, 5(3), 28. https://doi.org/10.3390/fishes5030028
Zainuddin, M., Kiyofuji, H., Saitoh, K., & Saitoh, S. I. (2006). Using multi-sensor satellite remote sensing and catch data to detect ocean hot spots for albacore (Thunnus alalunga) in the northwestern North Pacific. Deep Sea Research Part II: Topical Studies in Oceanography, 53(3-4), 419-431. https://doi.org/10.1016/j.dsr2.2006.01.007
Zainuddin, M., Nelwan, A., Farhum, S. A., Hajar, M. A. I., Kurnia, M. S. (2013). Characterizing potential fishing zone of skipjack tuna during the southeast monsoon in the Bone Bay-Flores Sea using remotely sensed oceanographic data. IntlJ Geosci 4(1): 259-266. DOI: 10.4236/ijg.2013.41a023.
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., Smith, G. M., (2009). Mixed Effect Models and Extension in Ecology With R. New Yardyork (US): Springer.
DOI: http://dx.doi.org/10.15578/bawal.17.2.2025.77%20-%2087

Bawal Widya Riset Perikanan Tangkap is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats
p-ISSN 1907-8226
e-ISSN 2502-6410