GENETIC DIVERSITY, GROWTH AND CARRAGEENAN QUALITY OF KOTONI (RED SEAWEED) ACROSS THREE CULTIVATION SITES IN EASTERN INDONESIA

Siti Fadilah, Petrus Rani Pong-Masak, Aditia Farman, Pustika Ratnawati

Abstract


Indonesia is a leading global producer of seaweed, with kotoni seaweed highly valued for its high-quality carrageenan, an essential ingredient in various industries. This study aimed to evaluate the growth, carrageenan quality, and genetic diversity of kotoni seaweed cultivated at three distinct sites in eastern Indonesia: Banggai, West Halmahera, and Biak. The research involved cultivating kotoni seaweed over a 45-day period using the long-line technique, with growth monitoring conducted every five days and water quality parameters measured concurrently. Additionally, ex situ analyses of nitrate, phosphate, and ammonia were performed every 15 days. Carrageenan quality was assessed by measuring carrageenan content, gel strength, and viscosity, in addition to proximate composition analysis. Genetic diversity was evaluated using the cytochrome oxidase subunit 1 (COI) gene, involving DNA extraction, PCR amplification, and sequencing to determine genetic similarity across the cultivation sites. Significant differences in growth rates and carrageenan quality were observed across the three sites. West Halmahera exhibited the highest growth rate, making it the most favorable site for large-scale seaweed cultivation. Although Biak had a lower growth rate, it produced carrageenan with superior gel strength and viscosity, indicating higher product quality. Genetic analysis confirmed 100% similarity among the samples across sites. These findings underscore the importance of site-specific cultivation practices to optimize both yield and carrageenan quality, supporting the sustainability and economic viability of kotoni seaweed cultivation in Indonesia.

Keywords


carrageenan; cultivation sites; genetic diversity; kotoni; seaweed cultivation

Full Text:

PDF

References


Andayani, A., & Pamungkas, A. (2018). Identification of potential suitability area for seaweed farming in Mulut Seribu Bay, Rote Ndao, East Nusa Tenggara. Media Akuakultur, 13(2), 99–107.

AOAC. (1990). Official Method of Analysis (Association of Official Analytical Chemists (ed.); 15th ed.). AOAC International Publisher.

APHA. (2012). Standard methods for the examination of water and wastewater (E. W. Rice, R. B. Baird, A. D. Eaton, & L. S. Clesceri (eds.); 22nd ed.). American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF).

Ateweberhan, M., Rougier, A., & Rakotomahazo, C. (2014). Influence of environmental factors and farming technique on growth and health of farmed Kappaphycus alvarezii (cottonii) in south-west Madagascar. Applied Phycology. https://doi.org/10.1007/s10811-014-0378-3

Biris-Dorhoi, E. S., Michiu, D., Pop, C. R., Rotar, A. M., Tofana, M., Pop, O. L., Socaci, S. A., & Farcas, A. C. (2020). Macroalgae—A sustainable source of chemical compounds with biological activities. Nutrients, 12(10), 1–23. https://doi.org/10.3390/nu12103085

Bohari, R., & Musbir, M. (2022). Seaweed production based on the distance of culture location from river mouth and oceanographic factors. IOP Conference Series: Earth and Environmental Science, 1119(1), 6–11. https://doi.org/10.1088/1755-1315/1119/1/012007

Charrier, B., Rolland, E., Gupta, V., & Reddy, C. R. (2015). Production of genetically and developmentally modified seaweeds: Exploiting the potential of artificial selection techniques. Frontiers in Plant Science, 6(MAR). https://doi.org/10.3389/fpls.2015.00127

Dumilag, R. V., Gallardo, W. G. M., Garcia, C. P. C., You, Y. E., Chaves, A. K. G., & Agahan, L. (2018). Phenotypic and mtDNA variation in Philippine Kappaphycus cottonii (Gigartinales, Rhodophyta). Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 29(6), 951–963. https://doi.org/10.1080/24701394.2017.1398745

Erlania, & Radiarta, I. N. (2014). Seasonal cultivatian periods of four Eucheumatoids seaweeds variants performance in Gerupuk Bay, West Nusa Tenggara. Jurnal Riset Akuakultur, 9(2), 331–342.

García-Poza, S., Leandro, A., Cotas, C., Cotas, J., Marques, J. C., Pereira, L., & Gonçalves, A. M. M. (2020). The evolution road of seaweed aquaculture: Cultivation technologies and the industry 4.0. In International Journal of Environmental Research and Public Health (Vol. 17, Issue 18). https://doi.org/10.3390/ijerph17186528

Hurtado, A. Q., Neish, I. C., & Critchley, A. T. (2015). Developments in production technology of Kappaphycus in the Philippines: more than four decades of farming. Journal of Applied Phycology, 27(5), 1945–1961. https://doi.org/10.1007/s10811-014-0510-4

Iha, C., Milstein, D., Guimarães, S. M. P. B., Freshwater, D. W., & Oliveira, M. C. (2015). DNA barcoding reveals high diversity in the Gelidiales of the Brazilian southeast coast. Botanica Marina, 58(4), 295–305. https://doi.org/10.1515/bot-2014-0069

Johan, O., Erlania, & Radiarta, I. N. (2015). Relationship between bottom substrate types with wild seaweed species occurrence in Ujung Genteng coastal waters, Sukabumi, West Java. Jurnal Riset Akuakultur, 10(4), 609–618.

Kim, J. K., Yarish, C., Hwang, E. K., Park, M., & Kim, Y. (2017). Seaweed aquaculture: Cultivation technologies, challenges and its ecosystem services. Algae, 32(1), 1–13. https://doi.org/10.4490/algae.2017.32.3.3

Kumar, K. S., Ganesan, K., & Rao, P. V. S. (2014). Seasonal variation in nutritional composition of Kappaphycus alvarezii (Doty) Doty—an edible seaweed. Journal of Food Science and Technology, 52(5), 2751–2760. https://doi.org/10.1007/s13197-014-1372-0

Kumar, Y. N., Poong, S. W., Gachon, C., Brodie, J., Sade, A., & Lim, P. E. (2020). Impact of elevated temperature on the physiological and biochemical responses of Kappaphycus alvarezii (Rhodophyta). PLoS ONE, 15(9 september), 1–16. https://doi.org/10.1371/journal.pone.0239097

Larson, S., Stoeckl, N., Fachry, M. E., Dalvi Mustafa, M., Lapong, I., Purnomo, A. H., Rimmer, M. A., & Paul, N. A. (2021). Women’s well-being and household benefits from seaweed farming in Indonesia. Aquaculture, 530(June 2020), 735711. https://doi.org/10.1016/j.aquaculture.2020.735711

Lim, P. E., Tan, J., Phang, S. M., Nikmatullah, A., Hong, D. D., Sunarpi, H., & Hurtado, A. Q. (2014). Genetic diversity of Kappaphycus Doty and Eucheuma J. Agardh (Solieriaceae, Rhodophyta) in Southeast Asia. Journal of Applied Phycology, 26(2), 1253–1272. https://doi.org/10.1007/s10811-013-0197-y

Luhan, M. R. J., Mateo, J. P., & Sollesta-Pitogo, H. (2022). Growth and Carrageenan Quality of Sporophyte and Gametophyte of the Commercially Important Red Seaweed Kappaphycus alvarezii. Philippine Journal of Science, 151(S1), 129–134. https://doi.org/10.56899/151.S1.08

Maili, S., Rodrigues, K. F., Thien, V. Y., Yong, W. T. L., Anton, A., & Chin, G. J. W. L. (2016). Development and application of single locus genomic molecular marker for Kappaphycus and Eucheuma (Solieriaceae, Rhodophyta) seaweeds. Aquatic Botany, 128, 26–32. https://doi.org/10.1016/j.aquabot.2015.09.006

Makmur, Fahrur, M., & Susianingsih, E. (2016). The performance evaluation of seaweed Kappaphycus alvarezii from different seed sources in South Konawe, South East Sulawesi. Media Akuakultur, 11(2), 77–85.

Maradhy, E., Nazriel, R. S., Sutjahjo, S. H., Rusli, M. S., Widiatmaka, & Sondita, M. F. A. (2021). Evaluation of water suitability for sustainable seaweed (Kappaphycus alvarezii) cultivation to support science technopark in North Kalimantan. Journal of Natural Resources and Environmental Management, 11(3), 490–503. https://doi.org/http://dx.doi.org/10.29244/jpsl.11.3.490-503

Norhazariah, S., Azahari, B., Sivakumar, R., & Azura, A. R. (2018). A Comparative Study on the Physiochemical Properties of Semi-Refined Carrageenan from Low Industrial Grade Seaweed and High-Grade Seaweed of Kappaphycus Alvarezii. Journal of Physics: Conference Series, 1082(1). https://doi.org/10.1088/1742-6596/1082/1/012008

Radiarta, I. N., & Erlania. (2015). Water quality index and distribution of nutrient around integrated marine aquaculture in Ekas Bay, West Nusa Tenggara: an important factor for seaweed aquaculture. Jurnal Riset Akuakultur, 10(1), 141–152.

Ratnawati, P., Simatupang, N. F., Pong-Masak, P. R., Paul, N. A., & Zuccarello, G. C. (2020). Genetic diversity analysis of cultivated kappaphycus in indonesian seaweed farms using coi gene. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 15(2), 65–72. https://doi.org/10.15578/squalen.v15i2.466

Rimmer, M. A., Larson, S., Lapong, I., Purnomo, A. B., Pong-Masak, P. R., Swanepoel, L., & Paul, N. A. (2021). Seaweed Aquaculture in Indonesia Contributes to Social and Economic Aspects of Livelihoods and Community Wellbeing. Sustainability, 13(19), 10946. https://doi.org/10.3390/su131910946

Risjani, Y., & Abidin, G. (2020). Genetic diversity and similarity between green and brown morphotypes of Kappaphycus alvarezii using RAPD. Journal of Applied Phycology, 32(4), 2253–2260. https://doi.org/10.1007/s10811-020-02223-z

Roleda, M. Y., & Hurd, C. L. (2019). Seaweed nutrient physiology: application of concepts to aquaculture and bioremediation. Phycologia, 58(5), 552–562. https://doi.org/10.1080/00318884.2019.1622920

Rupert, R., Rodrigues, K. F., Thien, V. Y., & Yong, W. T. L. (2022). Carrageenan From Kappaphycus alvarezii (Rhodophyta, Solieriaceae): Metabolism, Structure, Production, and Application. Frontiers in Plant Science, 13(May), 1–16. https://doi.org/10.3389/fpls.2022.859635

Saunders, G. W. (2005). Applying DNA barcoding to red macroalgae/ : a preliminary appraisal holds promise for future applications. Phil. Trans. R. Soc. B, 360, 1879–1888. https://doi.org/10.1098/rstb.2005.1719

Simatupang, N. F., Pong-Masak, P. R., Ratnawati, P., Agusman, Paul, N. A., & Rimmer, M. A. (2021). Growth and product quality of the seaweed Kappaphycus alvarezii from different farming locations in Indonesia. Aquaculture Reports, 20(March), 100685. https://doi.org/10.1016/j.aqrep.2021.100685

Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6/ : Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729. https://doi.org/10.1093/molbev/mst197

Tan, P. L., Poong, S. W., Tan, J., Brakel, J., Gachon, C., Brodie, J., Sade, A., & Lim, P. E. (2022). Assessment of genetic diversity within eucheumatoid cultivars in east Sabah, Malaysia. Journal of Applied Phycology, 34(1), 709–717. https://doi.org/10.1007/s10811-021-02608-8

Trifinopoulos, J., Nguyen, L., Haeseler, A. Von, & Minh, B. Q. (2016). W-IQ-TREE/ : a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 1–4. https://doi.org/10.1093/nar/gkw256

Usuldin, S. R. A., Al-Obaidi, J. R., Razali, N., Junit, S. M., Ajang, M. J., Hussin, S. N. I. S., Hamid, S. S., Hanafi, N. M., Roni, A. N. H. M., & Saleh, N. M. (2017). Molecular investigation of carrageenan production in Kappaphycus alvarezii in different culture conditions: a proteomic approach. Journal of Applied Phycology, 29(4). https://doi.org/10.1007/s10811-017-1119-1

Zuccarello, G. C., & Lokhorst, G. M. (2005). Molecular phylogeny of the genus Tribonema (Xanthophyceae) using rbcL gene sequence data/ : Monophyly of morphologically simple algal species. Phycologia, 44, 384–392. https://doi.org/10.2216/0031-8884(2005)44

Zuccarello, G. C., & Paul, N. A. (2019). A beginner’s guide to molecular identification of seaweed. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 14(1), 43–53. https://doi.org/10.15578/squalen.v14i1.384




DOI: http://dx.doi.org/10.15578/iaj.19.2.2024.167-178

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Creative Commons License
Indonesian Aquaculture Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats
p-ISSN: 0215-0883
e-ISSN: 2502-6577

 

Hasil gambar untuk isjd