EFFECT OF NEGATIVE REDOX POTENTIAL OF DRY SEDIMENT ON THE INFECTIVITY OF Vibrio parahaemolyticus, GROWTH AND HEALTH STATUS OF PACIFIC WHITELEG SHRIMP
Abstract
Keywords
Full Text:
PDFReferences
Anderson, D. & Sawcki, A. (1995). Basic Haematology and Serology for Fish Health Program. In Second Symposium on Diseases in Asia Aquaculture “Aquatic Animal Health and The Environmental.” Phuket. hlm 17.
Boyd, C. E. & Phu, T. Q. (2018). Environmental factors and acute hepatopancreatic necrosis disease (AHPND) in shrimp ponds in Viet Nam: Practices for reducing risks. Asian Fisheries Sciences, 31S, 121-136. https://doi.org/10.33997/j.afs.2018.31.S1.009
Chainark, S., Chainark, P., & Soonsan, P. (2023). Differences in shrimp pond bottom soil properties and bacterial load between acute hepatopancreatic necrosis disease (AHPND)-infected ponds and AHPND-free ponds and their relation to AHPND. J World Aquac Soc, 55(3), 1-26. https://doi.org/10.1111/jwas.13071
Cheng, W., Hsiao, I. S., Hsu, C. H., & Chen, J. C. (2004). Change in water temperature on the immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus. Fish Shellfish Immunol, 17(3), 235–243. https://doi.org/10.1016/j.fsi.2004.03.007
Chien, Y. (1989). The Management of Sediment in Prawn Ponds. In the: The Third Brazillian Shrimp Farming Congress. Joao Pessoa, PB, Brazil. hlm 219–243.
Chonsin, K., Matsuda, S., Theethakaew, C., Kodama, T., Junjhon, J., Suzuki, Y., Suthienkul, O., & Iida, T. (2018). Genetic diversity of Vibrio parahaemolyticus strans isolated from farmed Pacific white shrimp and ambient pond water affected by acute hepatopancreatic necrosis disease outbreak in Thailand. FEMS Microbiol Lett, 363(2), 53–54. https://doi.org/10.1093/femsle/fnv222
Chrisnawati, V., Rahardja, B. S., & Satyantini W, H. (2018). The effect of administering probiotics at different times on the reduction of ammonia and total organic matter in the rearing media of Pacific white shrimp Litopenaeus vannamei). Journal of Marine and Coastal Science, 7(2), 68–77. https://doi.org/10.20473/jmcs.v7i2.20715
Dangtip, S., Sirikharin, R., Sanguanrut, P., Thitamadee, S., Sritunyalucksana, K., Taengchaiyaphum, S., Mavichak, R., Proespraiwong, P., & Flegel. T. W. (2015). AP4 method for two-tube nested PCR detection of AHPND isolates of Vibrio parahaemolyticus. Aquac Rep, 2, 158–162. https://doi.org/10.1016/j.aqrep.2015.10.002
Effendie, M. I. (1997). Biologi Perikanan. Yogyakarta (ID): Yayasan Pustaka Nusantara.
FAO. (2023). GLOBEFISH: Information and Analysis on Market Trade of Fisheries and Aquaculture. [Access on 2023 Jun 10]. https://www.fao.org/in-action/-%0Aglobefish/market-reports.
Febrianti, D., Yuhana, M., & Widanarni, W. (2016). Dietary synbiotic microcapsule influence the immune responses, growth performance and microbial populations to white spot syndrome virus in Pacific white shrimp (Litopenaeus vannamei). J Fish Aquat Sci, 11(1), 28–42. https://doi.org/:10.3923/jfas.2016.28.42
Foysal, M. J., Fotedar, R., Siddik, M. A. B., & Tay, A. (2020). Lactobacillus acidophilus and L. plantarum improve health status, modulate gut microbiota and innate immune response of marron (Cherax cainii). Sci Rep, 10(1), 1–13. https://doi.org/10.1038/s41598-020-62655-y
Halver, J. E., & Hardy, R. W. (2002). Fish Nutriton. Ed ke-3. California (CA): Academic Press, Inc.
Hamed, S. Ben, Ranzani-Paiva, M. J. T., Tachibana, L., Dias, D. de C., Ishikawa, C. M., & Esteban, M. A. (2018). Fish pathogen bacteria: Adhesion, parameters influencing virulence and interaction with host cells. Fish Shellfish Immunol, 80 (March), 550–562. https://doi.org/10.1016/j.fsi.2018.06.053
Hamsah, H., Widanarni, W., Alimuddin, A., Yuhana, M., Junior, M. Z., & Hidayatullah, D. (2019). Immune response and resistance of Pacific white shrimp larvae administered probiotic, prebiotic, and synbiotic through the bio-encapsulation of Artemia sp. Aquaculture International, 27(2), 567–580. https://doi.org/10.1007/s10499-019-00346-w
Hong, X., Lu, L., & Xu, D. (2016). Progress in research on acute hepatopancreatic necrosis disease (AHPND). Aquaculture International, 24(2), 577–593. https://doi.org/10.1007/s10499-015-9948-x
Huynh, T.G., Cheng, A.C., Chi, C.C., Chiu, K.H., Liu, C.H. (2018). A synbiotic improves the immunity of white shrimp, Litopenaeus vannamei: Metabolomic analysis reveal compelling evidence. Fish Shellfish Immunol, 79:284–293. https://doi.org/0.1016/j.fsi.2018.05.031.
KKP (Ministry of Marine and Fisheries). (2016). Regulation of the Ministry of Marine and Fisheries of the Republic of Indonesia Number 75/Permen-KP/2016 concerning General Guidelines for Raising Tiger Prawns (Penaeus Monodon) and Vaname Shrimp (Litopenaeus vannamei) 22nd volume. Indonesiahlm 1–43. https://peraturan.bpk.go.id/Details/158666/permen-kkp-no-75permen-kp2016-tahun-2016.
KKP (Ministry of Marine and Fisheries). (2023). Area of cultivation. [Access 2024 Jun 21]. https://portaldata.kkp.go.id/#panel-footer-kpda
Kumar, S. S., Bharathi, R. A, Rajan, J., Alavandi, S., Poornima, M., Balasubramanian, C., & Ponniah, A. (2013). Viability of white spot syndrome virus (WSSV) in sediment during sun-drying (drainable pond) and under non-drainable pond conditions indicated by infectivity to shrimp. Aquaculture, 402–403, 119–126. https://doi.org/:10.1016/j.aquaculture.2013.04.001
Lightner, D. V., & Redman, R. (1977). Histochemical demonstration of melanin in cellular inflammatory processes of penaeid shrimp. J Invertebr Pathol, 30(3), 298–302. https://doi.org/:10.1016/0022-2011(77)90137-9
Liu, F., Li, S., Yu, Y., Sun, M., Xiang, J., & Li, F. (2019). Effects of ammonia stress on the haemocytes of the Pacific white shrimp Litopenaeus vannamei. Chemosphere, 239, 124759. https://doi.org/:10.1016/j.chemosphere.2019.124759
Liu, C. H., & Chen, J. C. (2004). Effect of ammonia on the immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus. Fish Shellfish Immunol, 16(3), 321–334. https://doi.org/:10.1016/S1050-4648(03)00113-X.
Madigan, M., Martinko, J., Dunlap, P., & Clark, D. (2014). Biology of Microorganisms. Ed ke-12. San Fransisco (CA): Pearson.
Marsi., Sabaruddin., Warsito., Jubaedah, D., Triovani, B., Fitria, E. A., Anggraini, L., & Nuranjani. (2024). Dynamics of pyritic soil ph due to changes in water conditions and ameliorant application. J. Solum, 21(1), 30-42. https://doi.org/:10.25077/jsolum.21.1.30-42.2024
Mira, M., Sujarwo, P. A., Triyanti, R., Shafitri, N., & Zulham, A. (2022). Comparative analysis of Pacific white shrimp farming using traditional, semi-intensive, and intensive techniques in coastal areas. Jurnal Sosial Ekonomi Kelautan dan Perikanan, 17(1), 51-62. https://doi.org/:10.15578/jsekp.v17i1.10228
Morales-Covarrubias, M., Cuellar-Anjel, J., Varela-Mejias, A., & Elizondo-Ovares. (2018). Shrimp bacterial infections in latin america: a review. Asian Fish Sci, 31S, 76–87. https://doi.org/:10.33997/j.afs.2018.31.s1.001
Parlina, I., Nasirin, N., Ihsan, I. M., Suharyadi, S., Syaputra, A., Budiani, S., & Hanif, M. (2018). Comparison of environmental management in Pacific white shrimp (Litopenaeus vannamei) farming with the application of chelated inorganic substances and probiotics.. Jurnal Teknologi Lingkungan, 19(1), 33-40. https://doi.org/:10.29122/jtl.v19i1.2533
Peña-Navarro, N., Castro-Vásquez, R., Vargas-Leitón, B., & Dolz, G. (2020). Molecular detection of acute hepatopancreatic necrosis disease (AHPND) in Penaeus vannamei shrimps in Costa Rica. Aquaculture, 523(735190), 1-8. https://doi.org/:10.1016/j.aquaculture.2020.735190
Rahayu, T. H. (2022). Export-oriented aquaculture and aquaculture villages based on the blue economy. In: Ministry of Marine Affairs and Fisheries, Directorate General of Aquaculture. page 1–23.
Sirikhairin, R., Taengchaiyaphum, S., Sritunyalucksana, K., Thitamadee, S., Flegel, T., & Mavichak, R. (2014). A new and improved PCR method for detection of AHPND bacteria. Aquatic Animal Health Research Center. https://enaca.org/?id=96
Soto-Rodriguez, S. A., Gomez-Gil, B., Lozano-Olvera, R., Bolanmejia, C., Aguilar-Rendon, K. G., & Enciso-Ibarra, J. (2018). Pathological, genomic and phenotypical characterization of Vibrio parahaemolyticus, causative agent of acute hepatopancreatic necrosis disease (AHPND) in Mexico. Asian Fish Sci. 31 Special Acute Hepatopancreatic Necrosis Disease (AHPND), 102–111, https://doi.org/:10.33997/j.afs.2018.31.s1.007
Soto-Rodriguez, S. A, Lozano-Olvera, R., Palacios-Gonzalez, D. A, Bolan-Mejia C., & Rendon-Aguilar, K. G. (2019). Characterization and growth conditions of Vibrio parahaemolyticus strains with different virulence degrees that cause acute hepatopancreatic necrosis disease in Litopenaeus vannamei. J World Aquac Soc, 50(5), 1002–1015. https://doi.org/:10.1111/jwas.12617
Supono, S., Pinem, R. T., & Harpeni, E. (2021). Performance of Pacific white shrimp (Litopenaeus vannamei) reared in a biofloc system with different carbon sources. J Kelaut, 14(2), 192–202. http://doi.org/10.21107/jk.v14i2.9191
Suwoyo, S. H., Tahe, S., & Fahrur, M. (2015). Characterization of sediment waste in super-intensive Pacific white shrimp (Litopenaeus vannamei) farming with varying densities. In the: Prosiding Forum Inovasi Teknologi Akuakultur, hlm 901–913.
Tran, L., Nunan, L., Redman, R. M., Mohney, L. L., Pantoja, C. R., Fitzsimmons, K., & Lightner, D. V. (2013). Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Dis Aquat Organ, 105(1), 45–55. https://doi.org/:10.3354/dao02621
Torun, F., Hostins, B., Teske, J., De Schryver, P., Boon, N., & De Vrieze, J. (2020). Nitrate amendment to control sulphide accumulation in shrimp ponds. Aquaculture, 521:735010. https://doi.org/:10.1016/j.aquaculture.2020.735010
Valente, C. de S., & Wan, A.H. (2021). Vibrio and major commercially important vibriosis diseases in decapod crustaceans. J Invertebr Pathol, 181 May 2020, 107527. https://doi.org/:10.1016/j.jip.2020.107527
Wahyuningrum, E., Muskananfola, M., & Suryanto, A. (2016). Relationship between sediment texture, organic matter, and macrozoobenthos abundance in the Wulan Delta, Demak Regency. Diponegoro Journal of Maquares, 5(1), 46–51. https://doi.org/:10.2307/2324223
Wiyoto, W., Sukenda, S., Harris, E., Nirmala, K., & Djokosetiyanto, D. (2016). Water quality and sediment profile in shrimp culture with different sediment redox potential and stocking densities under laboratory condition. Ilmu Kelautan, 21(2), 65-76. https://doi.org/:10.14710/ik.ijms.21.2.65-76
Wiyoto, W., Sukenda, S., Harris, E., Nirmala, K., Djokosetiyanto, D., & Ekasari, J. (2017). The effects of sediment redox potential and stocking density on Pacific white shrimp Litopenaeus vannamei production performance and white spot syndrome virus resistance. Aquac Res, 48(6), 2741–2751. https://doi.org/:10.1111/are.13107
Zhang, X., Yuan, J., Sun, Y., Li, S., Gao, Y., Yu, Y., Liu, C., ... Xiang, J. (2019). Penaeid shrimp genome provides insights into benthic adaptation and frequent molting. Nat Commun, 10(1), 1-14. https://doi.org/:10.1038/s41467-018-08197-4
Zeng, S., Wei, D., Hou, D., Wang, H., Liu, J., Weng, S., He, J., & Huang, Z. (2021). Sediment microbiota in polyculture of shrimp and fish pattern is distinctive from those in monoculture intensive shrimp or fish ponds. Science of the Total Environment, 787, 147594. https://doi.org/:10.1016/j.scitotenv.2021.147594
Zhou, Q., Li, K., Jun, X., & Bo, L. (2009). Role and functions of beneficial microorganisms in sustainable aquaculture. Bioresour Technol, 100(16), 3780–3786. https://doi.org/:10.1016/j.biortech.2008.12.037
DOI: http://dx.doi.org/10.15578/iaj.20.2.2025.133-144

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Aquaculture Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.














_25.jpg)


