SPECIES IDENTIFICATION AND GENETIC DIVERSITY OF PORTUGUESE OYSTER (Crassostrea angulata): IMPLICATIONS FOR BREEDING IN VIETNAM

Luan Thanh Nguyen, Thong Hoang Nguyen, Loc Hong Nguyen, Nguyen Hoang Khoi Le, Suong Thao Nguyen, Thanh Minh Nguyen, Tri Nhu Nguyen, Sang Van Nguyen

Abstract


Cupped oyster has emerged as the predominant mollusk farmed domestically in Vietnam because of its exceptional adaptability to the local subtropical and tropical climates. However, considerable confusion remains regarding the identity of the cultivated species due to the taxonomic ambiguity between Portuguese cupped oyster (Crassostrea angulata) and Pacific cupped oyster (Crassostrea gigas). This study aims to clarify the species identity of the most commonly farmed cupped oysters in Vietnam and to evaluate genetic diversity and the suitability of oyster strains for a breeding program including three Vietnamese strains (Quang Ninh, Khanh Hoa, and Vung Tau) and one wild population from Taiwan. Based on mitochondrial DNA cytochrome c oxidase subunit I (COI) sequences, our results confirmed that all samples in Vietnam and Taiwan are C. angulata. Furthermore, this study performed genetic analyses using mtCOI sequences and five microsatellites. Populations in Vietnam and Taiwan maintain high levels of genetic diversity, with the average number of alleles per population varied between 7.80 to 16.0, and there was no statistical difference between observed and expected heterozygosity (P > 0.05), except in the hatchery population Vung Tau. The samples collected from this population suffered a great loss of heterozygosity and occupied the highest Fis value (Fis = 0.3), which is likely due to the small size of founding stock and long-term artificial breeding by local hatchery farmers, resulting in a strong genetic bottleneck and inbreeding depression. Pairwise FST calculated by microsatellites with a range of 0.043 to 0.093 revealed significant (P < 0.05) levels of genetic differentiation among oyster lines. Collectively,  our findings clarify the taxonomic status of farmed oysters in Vietnam and highlight the importance of crossing among different strains in future breeding programs to maximize the genetic gain and avoid inbreeding, especially when using the oyster strain from Vung Tau.


Keywords


genetic diversity; microsatellites; mtCOI marker; Portuguese oysters; species identification

Full Text:

PDF

References


Boudry, P., Heurtebise, S., Collet, B., Cornette, F., & Gérard, A. (1998). Differentiation between populations of the Portuguese oyster, Crassostrea angulata (Lamark) and the Pacific oyster, Crassostrea gigas (Thunberg), revealed by mtDNA RFLP analysis. Journal of Experimental Marine Biology and Ecology, 226(2), 279-291.

Buestel, D., Ropert, M., Prou, J., & Goulletquer, P. (2009). History, status, and future of oyster culture in France. Journal of Shellfish Research, 28(4), 813-820.

Chen, N., Luo, X., Lu, C., Ke, C., & You, W. (2017). Effects of artificial selection practices on loss of genetic diversity in the Pacific abalone, Haliotis discus hannai. Aquaculture Research, 48(9), 4923-4933.

De Meeûs, T. (2018). Revisiting Fis, Fst, Wahlund effects, and null alleles. Journal of Heredity, 109(4), 446-456.

Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology, 14(8), 2611-2620.

Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564-567.

Falush, D., Stephens, M., & Pritchard, J. K. (2003). Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics, 164(4), 1567-1587.

Food and Agriculture Organization of the United Nations (FAO). (2024). The state of world fisheries and aquaculture 2024 – blue transformation in action (978-92-5-138763-4). Retrieved from Rome: https://doi.org/10.4060/cd0683en

Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol, 3(5), 294-299.

Goudet, J. (1995). FSTAT (Version 1.2): A computer program to calculate F-statistics. Journal of Heredity, 86(6), 485-486.

Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT.

Hillen, J. E. J., Coscia, I., Vandeputte, M., Herten, K., Hellemans, B., Maroso, F., . . . Volckaert, F. A. M. (2017). Estimates of genetic variability and inbreeding in experimentally selected populations of European sea bass. Aquaculture, 479, 742-749.

Holtsmark, M., Sonesson, A. K., Gjerde, B., & Klemetsdal, G. (2006). Number of contributing subpopulations and mating design in the base population when establishing a selective breeding program for fish. Aquaculture, 258(1), 241-249.

Hsiao, S.-T., Chuang, S.-C., Chen, K.-S., Ho, P.-H., Wu, C.-L., & Chen, C. A. (2016). DNA barcoding reveals that the common cupped oyster in Taiwan is the Portuguese oyster Crassostrea angulata (Ostreoida; Ostreidae), not C. gigas. Sci Rep, 6(1), 34057.

Huvet, A., Boudry, P., Ohresser, M., Delsert, C., & Bonhomme, F. (2000a). Variable microsatellites in the Pacific Oyster Crassostrea gigas and other cupped oyster species. Animal Genetics, 31(1), 71-72.

Huvet, A., Lapègue, S., Magoulas, A., & Boudry, P. (2000b). Mitochondrial and nuclear DNA phylogeography of Crassostrea angulata, the Portuguese oyster endangered in Europe. Conservation Genetics, 1(3), 251-262.

In, V. V., O'Connor, W., Sang, V. V., Van, P. T., & Knibb, W. (2017). Resolution of the controversial relationship between Pacific and Portuguese oysters internationally and in Vietnam. Aquaculture, 473, 389-399.

Jiang, G., Li, Q., Xu, C., Liu, S., Kong, L., & Yu, H. (2021). Reciprocal hybrids derived from Crassostrea gigas and C. angulata exhibit high heterosis in growth, survival and thermotolerance in northern China. Aquaculture, 545, 737173.

Jiang, G., Xu, C., & Li, Q. (2025). General and specific combining abilities of Pacific oyster (Crassostrea gigas) and Fujian oyster (C. angulata) for growth, survival and thermal tolerance of their reciprocal hybrids. Journal of Ocean University of China, 24(1), 238-248.

Jiang, K., Chen, C., Jiang, G., Chi, Y., Xu, C., Kong, L., . . . Li, Q. (2024). Genetic improvement of oysters: Current status, challenges, and prospects. Reviews in Aquaculture, 16(2), 796-817.

Kalinowski, S. T., Taper, M. L., & Marshall, T. C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16(5), 1099-1106.

Knibb, W., Whatmore, P., Lamont, R., Quinn, J., Powell, D., Elizur, A., . . . Nguyen, N. H. (2014). Can genetic diversity be maintained in long term mass selected populations without pedigree information? — A case study using banana shrimp Fenneropenaeus merguiensis. Aquaculture, 428-429, 71-78.

Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A., & Mayrose, I. (2015). Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources, 15(5), 1179-1191.

Lal, M. M., Waqairatu, S. S., Zenger, K. R., Nayfa, M. G., Pickering, T. D., Singh, A., & Southgate, P. C. (2021). The GIFT that keeps on giving? A genetic audit of the Fijian Genetically Improved Farmed Tilapia (GIFT) broodstock nucleus 20 years after introduction. Aquaculture, 537, 736524.

Le, T. N. P., Vu, S. V., Ugalde, S. C., Subramanian, S., Gilmour, A., Dove, M., . . . O’Connor, W. (2023). The genetics and breeding of the Portuguese oyster, Crassostrea angulata: lessons, experiences, and challenges in Vietnam. Frontiers in Marine Science, 10.

Leigh, J. W., & Bryant, D. (2015). POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110-1116.

Li, A., Li, L., Song, K., Wang, W., & Zhang, G. (2017). Temperature, energy metabolism, and adaptive divergence in two oyster subspecies. Ecology and Evolution, 7(16), 6151-6162.

Li, G., Hubert, S., Bucklin, K., Ribes, V., & Hedgecock, D. (2003). Characterization of 79 microsatellite DNA markers in the Pacific oyster Crassostrea gigas. Molecular Ecology Notes, 3(2), 228-232.

Mickett, K., Morton, C., Feng, J., Li, P., Simmons, M., Cao, D., . . . Liu, Z. (2003). Assessing genetic diversity of domestic populations of channel catfish (Ictalurus punctatus) in Alabama using AFLP markers. Aquaculture, 228(1), 91-105.

Miller, S. A., Dykes, D. D., & Polesky, H. F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16(3), 1215-1215.

Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics, 28(19), 2537-2539.

Qin, Y., Shi, G., Wan, W., Li, S., Li, Y., Li, J., . . . Yu, Z. (2023). Comparative analysis of growth, survival and sex proportion among tetraploid-based autotriploid (Crassostrea gigas and C. angulata) and their allotriploid oysters. Aquaculture, 563, 739026.

Raymond, M., & Rousset, F. (1995). GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism. Journal of Heredity, 86(3), 248-249.

Reece, K. S., Cordes, J. F., Stubbs, J. B., Hudson, K. L., & Francis, E. A. (2008). Molecular phylogenies help resolve taxonomic confusion with Asian Crassostrea oyster species. Marine Biology, 153(4), 709-721.

Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34(12), 3299-3302.

Salvi, D., & Mariottini, P. (2017). Molecular taxonomy in 2D: a novel ITS2 rRNA sequence-structure approach guides the description of the oysters' subfamily Saccostreinae and the genus Magallana (Bivalvia: Ostreidae). Zoological Journal of the Linnean Society, 179(2), 263-276.

Sauvage, C., Boudry, P., & Lapègue, S. (2009). Identification and characterization of 18 novel polymorphic microsatellite makers derived from expressed sequence tags in the Pacific oyster Crassostrea gigas. Molecular Ecology Resources, 9(3), 853-855.

Sonesson, A. K., Hallerman, E., Humphries, F., Hilsdorf, A. W. S., Leskien, D., Rosendal, K., . . . Mair, G. C. (2023). Sustainable management and improvement of genetic resources for aquaculture. Journal of the World Aquaculture Society, 54(2), 364-396.

Tan, K., Deng, L., & Zheng, H. (2021). Effects of stocking density on the aquaculture performance of diploid and triploid, Pacific oyster Crassostrea gigas and Portuguese oyster C. angulata in warm water aquaculture. Aquaculture Research, 52(12), 6268-6279.

Thompson, J. A., Stow, A. J., & Raftos, D. A. (2017). Lack of genetic introgression between wild and selectively bred Sydney rock oysters Saccostrea glomerata. Marine Ecology Progress Series, 570, 127-139.

Thongda, W., Zhao, H., Zhang, D., Jescovitch, L. N., Liu, M., Guo, X., ... & Peatman, E. (2018). Development of SNP panels as a new tool to assess the genetic diversity, population structure, and parentage analysis of the eastern oyster (Crassostrea virginica). Marine biotechnology, 20, 385-395.

Ugalde, S. C., Vu, S. V., Giang, C. T., Ngoc, N. T. H., Tran, T. K. A., Mullen, J. D., . . . O'Connor, W. (2023). Status, supply chain, challenges, and opportunities to advance oyster aquaculture in northern Vietnam. Aquaculture, 572, 739548.

Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., & Shipley, P. (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4(3), 535-538.

Varney, R. L., & Wilbur, A. E. (2020). Analysis of genetic variation and inbreeding among three lines of hatchery-reared Crassostrea virginica broodstock. Aquaculture, 527, 735452.

Vu, S. V., Knibb, W., Nguyen, N. T. H., Vu, I. V., O'Connor, W., Dove, M., & Nguyen, N. H. (2020a). First breeding program of the Portuguese oyster Crassostrea angulata demonstrated significant selection response in traits of economic importance. Aquaculture, 518, 734664.

Vu, S. V., Knibb, W., O'Connor, W., Nguyen, N. T. H., Van In, V., Dove, M., & Nguyen, N. H. (2020b). Genetic parameters for traits affecting consumer preferences for the Portuguese oyster, Crassostrea angulata. Aquaculture, 526, 735391.

Wang, C., Li, A., Wang, W., Cong, R., Wang, L., Zhang, G., & Li, L. (2021). Integrated application of transcriptomics and metabolomics reveals the energy allocation-mediated mechanisms of growth-defense trade-offs in Crassostrea gigas and Crassostrea angulata. Frontiers in Marine Science, 8.

Wang, H., Qian, L., Liu, X., Zhang, G., & Guo, X. (2010). Classification of a common cupped oyster from Southern China. Journal of Shellfish Research, 29(4), 857-866, 810.

Yu, H., Gao, S., Chen, A., Kong, L., & Li, Q. (2015). Genetic diversity and population structure of the ark shell Scapharca broughtonii along the coast of China based on microsatellites. Biochemical Systematics and Ecology, 58, 235-241.

Yu, Z. (2023). Bottom culture is a promising strategy for final grow-out of the Portuguese oyster Crassostrea angulata. Aquacultural Engineering, 103, 102365.

Zhang, J., Li, Q., Wang, Q., Cong, R., Ge, J., & Kong, L. (2018). The impact of successive mass selection on population genetic structure in the Pacific oyster (Crassostrea gigas) revealed by microsatellite markers. Aquaculture International, 26, 113-125.

Zhang, Y., Chen, Y., Xu, C., & Li, Q. (2023). Comparative analysis of genetic diversity and structure among four shell color strains of the Pacific oyster Crassostrea gigas based on the mitochondrial COI gene and microsatellites. Aquaculture, 563, 73899




DOI: http://dx.doi.org/10.15578/iaj.20.1.2025.75-86

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Creative Commons License
Indonesian Aquaculture Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats
p-ISSN: 0215-0883
e-ISSN: 2502-6577

 

Hasil gambar untuk isjd