EFFECT OF DIFFERENT SUBSTRATES ON BIOFILM GROWTH AND LIPID CONTENT OF DIATOM Thalassiosira sp.

Joan Torrento Tabaquirao, Cleresa Salido Dionela, Fredson Hervias Huervana, Rex Ferdinand Mallare Traifalgar

Abstract


Diatoms are valuable as natural feed in aquaculture due to their lipid content and the presence of essential polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). While traditional suspended cultivation has limitations, attached cultivation offers advantages such as lower water use and improved lipid productivity. This study evaluated the growth, biomass, and lipid content of Thalassiosira sp. grown on polycarbonate (PC) and polyvinyl chloride (PVC) as attachment substrates. The control group was cultured in standard suspended cultivation method.  Test attachments substrates were submerged in sterile seawater enriched with F-medium, and growth was monitored for four days.  At day 4 of the culture, cell density was significantly higher on PC (13.08 × 105 cells mL-1) and PVC (13.01 × 105 cells mL-1) compared to the control (7.93 × 105 cells mL-1). The specific growth rate was also significantly higher on both substrates, exhibiting a doubling time of 0.20 days. Biomass accumulation was highest on PC (27.47 mg 100 mL-1), followed by PVC (26.87 mg 100 mL-1), representing increases of 38.39% and 35.37% over the control (19.85 mg 100 mL-1), respectively. Lipid content was higher in the attached culture system, reaching 8.50% on PC and 7.45% on PVC, corresponding to increases of 167.30% and 134.28% over the control (3.18%). These findings highlight the potential of PC and PVC as effective substrates for biofilm-based cultivation of Thalassiosira sp., demonstrating superior growth, biomass yield, and lipid accumulation compared to the suspended culture method. 


Keywords


Thalassiosira sp.; biofilm formation; polycarbonate; polyvinyl chloride; lipid content

Full Text:

PDF

References


Berner, F., Heimann, K., & Sheehan, M. (2015). Microalgal biofilms for biomass production. Journal of applied phycology, 27(5), 1793-1804. https://doi.org/10.1007/s10811-014-0489-x

Bhattacharjya, R., Marella, T. K., Tiwari, A., Saxena, A., Singh, P. K., & Mishra, B. (2020). Bioprospecting of marine diatoms Thalassiosira, Skeletonema and Chaetoceros for lipids and other value-added products. Bioresource Technology, 318, 124073.

https://doi.org/10.1016/j.biortech.2020.124073

Bhattacharya, S., & Shivaprakash, M. K. (2005). Evaluation of three Spirulina species grown under similar conditions for their growth and biochemicals. Journal of the Science of Food and Agriculture, 85(2), 333-336. https://doi.org/10.1002/jsfa.1998

Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian journal of biochemistry and physiology, 37(8), 911-917. https://doi.org/10.1139/o59-099

Boelee, N. C., Temmink, H., Janssen, M., Buisman, C. J. N., & Wijffels, R. H. (2011). Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water research, 45(18), 5925-5933. https://doi.org/10.1016/j.watres.2011.08.044

Carson, H. S., Nerheim, M. S., Carroll, K. A., & Eriksen, M. (2013). The plastic-associated microorganisms of the North Pacific Gyre. Marine pollution bulletin, 75(1-2), 126-132. https://doi.org/10.1016/j.marpolbul.2013.07.054

Chen, Y. C. (2012). The biomass and total lipid content and composition of twelve species of marine diatoms cultured under various environments. Food Chemistry, 131(1), 211-219. https://doi.org/10.1016/j.foodchem.2011.08.062

Coşgun, A., Günay, M. E., & Yıldırım, R. (2021). Exploring the critical factors of algal biomass and lipid production for renewable fuel production by machine learning. Renewable Energy, 163, 1299-1317. https://doi.org/10.1016/j.renene.2020.09.034

Dang, H., & Lovell, C. R. (2016). Microbial surface colonization and biofilm development in marine environments. Microbiology and molecular biology reviews, 80(1), 91-138. https://doi.org/10.1128/mmbr.00037-15

de Carvalho, C. C. (2018). Marine biofilms: a successful microbial strategy with economic implications. Frontiers in marine science, 5, 126. https://doi.org/10.3389/fmars.2018.00126

Dudek, K. L., Cruz, B. N., Polidoro, B., & Neuer, S. (2020). Microbial colonization of microplastics in the Caribbean Sea. Limnology and Oceanography Letters, 5(1), 5-17. https://doi.org/10.1002/lol2.10141

Eich, A., Mildenberger, T., Laforsch, C., & Weber, M. (2015). Biofilm and diatom succession on polyethylene (PE) and biodegradable plastic bags in two marine habitats: early signs of degradation in the pelagic and benthic zone?. PloS one, 10(9), e0137201. https://doi.org/10.1371/journal.pone.0137201

Garbowski, T., Bawiec, A.J., Pulikowski, K., Wiercik, P. (2017). Algae proliferation on substrates immersed in biologically treated sewage. J. Ecol. Eng., 18, 90–98. http://dx.doi.org/10.12911/22998993/66253

Gatamaneni, B. L., Orsat, V., & Lefsrud, M. (2018). Factors affecting growth of various microalgal species. Environmental Engineering Science, 35(10), 1037-1048. https://doi.org/10.1089/ees.2017.0521

Glencross, B. D. (2009). Exploring the nutritional demand for essential fatty acids by aquaculture species. Reviews in Aquaculture, 1(2), 71-124. https://doi.org/10.1111/j.1753-5131.2009.01006.x

Gómez-Ramírez, A. L., Enriquez-Ocaña, L. F., Miranda-Baeza, A., Cordero Esquivel, B., López-Elías, J. A., & Martínez-Córdova, L. R. (2019). Biofilm-forming capacity of two benthic microalgae, Navicula incerta and Navicula sp., on three substrates (Naviculales: Naviculaceae). Revista de Biología Tropical, 67(3), 599-607. http://dx.doi.org/10.15517/rbt.v67i3.35117

Gross, M., & Wen, Z. (2014). Yearlong evaluation of performance and durability of a pilotscale Revolving Algal Biofilm (RAB) cultivation system. Bioresource Technology, 171, 50–58. https://doi.org/10.1016/j.biortech.2014.08.052

Gross, M., Zhao, X., Mascarenhas, V., & Wen, Z. (2016). Effects of the surface physico-chemical properties and the surface textures on the initial colonization and the attached growth in algal biofilm. Biotechnology for biofuels, 9(1), 1-14. https://doi.org/10.1186/s13068-016-0451-z

Guillard, R. R., & Ryther, J. H. (1962). Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian journal of microbiology, 8(2), 229-239. https://doi.org/10.1139/m62-029

Irving, T. E., & Allen, D. G. (2011). Species and material considerations in the formation and development of microalgal biofilms. Applied microbiology and biotechnology, 92(2), 283–294. https://doi.org/10.1007/s00253-011-3341-0

Johnson, M. B., & Wen, Z. (2010). Development of an attached microalgal growth system for biofuel production. Applied microbiology and biotechnology, 85, 525-534. https://doi.org/10.1007/s00253-009-2133-2

Katarzyna, L., Sai, G., & Singh, O. A. (2015). Non-enclosure methods for non- suspended microalgae cultivation: literature review and research needs. Renewable and sustainable energy reviews, 42, 1418-1427. https://doi.org/10.1016/j.rser.2014.11.029

Kröpfl, K., Vladár, P., Szabó, K., Acs, E., Borsodi, A. K., Szikora, S., ... & Záray, G. (2006). Chemical and biological characterisation of biofilms formed on different substrata in Tisza river (Hungary). Environmental Pollution, 144(2), 626-631. https://doi.org/10.1016/j.envpol.2006.01.031

Landoulsi, J., Cooksey, K. E., & Dupres, V. (2011). Review–interactions between diatoms and stainless steel: focus on biofouling and biocorrosion. Biofouling, 27(10), 1105-1124. https://doi.org/10.1080/08927014.2011.629043

Lee, S. H., Oh, H. M., Jo, B. H., Lee, S. A., Shin, S. Y., Kim, H. S., ... & Ahn, C. Y. (2014). Higher biomass productivity of microalgae in an attached growth system, using wastewater. Journal of microbiology and biotechnology, 24(11), 1566-1573. https://doi.org/10.4014/jmb.1406.06057

Ma, L., Wang, F., Yu, Y., Liu, J., Wu, Y. (2018). Cu removal and response mechanisms of periphytic biofilms in a tubular bioreactor. Bioresour. Technol., 248, 61–67. https://doi.org/10.1016/j.biortech.2017.07.014

Miao, L., Wang, C., Adyel, T. M., Wu, J., Liu, Z., You, G., Meng, M., Qu, H., Huang, L., Yu, Y., & Hou, J. (2020). Microbial carbon metabolic functions of biofilms on plastic debris influenced by the substrate types and environmental factors. Environment international, 143, 106007. https://doi.org/10.1016/j.envint.2020.106007

Miao, L., Wang, P., Hou, J., Yao, Y., Liu, Z., Liu, S., & Li, T. (2019). Distinct community structure and microbial functions of biofilms colonizing microplastics. Science of the Total Environment, 650, 2395-2402. https://doi.org/10.1016/j.scitotenv.2018.09.378

Nodque, K. I. B., Dionela, C. S., Huervana, F. H., & Traifalgar, R. F. M. (2024). The growth kinetics and total lipid content of Thalassiosira sp. under mixotrophic conditions. Indonesian Aquaculture Journal, 19(1), 1–9. https://doi.org/10.15578/iaj.19.1.2024.1-9

Oberbeckmann, S., Osborn, A. M., & Duhaime, M. B. (2016). Microbes on a Bottle: Substrate, Season and Geography Influence Community Composition of Microbes Colonizing Marine Plastic Debris. PloS one, 11(8), e0159289. https://doi.org/10.1371/journal.pone.0159289

Podola, B., Li, T., Melkonian, M. (2017). Porous substrate bioreactors: a paradigm shift in microalgal biotechnology? Trends in Biotechnology, 35 (2), 121–132. https://doi.org/10.1016/j.tibtech.2016.06.004

Roostaei, J., Zhang, Y., Gopalakrishnan, K., & Ochocki, A. J. (2018). Mixotrophic microalgae biofilm: a novel algae cultivation strategy for improved productivity and cost-efficiency of biofuel feedstock production. Scientific reports, 8(1), 1- 10. https://doi.org/10.1038/s41598-018-31016-1

Schnurr, P. J., Espie, G. S., & Allen, D. G. (2013). Algae biofilm growth and the potential to stimulate lipid accumulation through nutrient starvation. Bioresource technology, 136, 337–344. https://doi.org/10.1016/j.biortech.2013.03.036

Shen, Y., Wang, S., Ho, S.-H., Xie, Y., Chen, J. (2018). Enhancing lipid production in attached culture of a thermotolerant microalga Desmodesmus sp. F51 using light-related strategies. Biochem. Eng. J., 129, 119–128. https://doi.org/10.1016/j.bej.2017.09.017

Smith, I. L., Stanton, T., & Law, A. (2021). Plastic habitats: Algal biofilms on photic and aphotic plastics. Journal of Hazardous Materials Letters, 2, 100038. https://doi.org/10.1016/j.hazl.2021.100038

Sweat, L. H., & Johnson, K. B. (2013). The effects of fine-scale substratum roughness on diatom community structure in estuarine biofilms. Biofouling, 29(8), 879-890. https://doi.org/10.1080/08927014.2013.811492

Thoisen, C., Pedersen, J. S., Jørgensen, L., Kuehn, A., Hansen, B. W., & Nielsen, S. L. (2020). The effect of cell density on biomass and fatty acid productivity during cultivation of Rhodomonas salina in a tubular photobioreactor. Aquaculture Research, 51(8), 3367-3375. https://doi.org/10.1111/are.14672

von Ammon, U., Wood, S. A., Laroche, O., Zaiko, A., Tait, L., Lavery, S., Inglis, G., & Pochon, X. (2018). The impact of artificial surfaces on marine bacterial and eukaryotic biofouling assemblages: A high-throughput sequencing analysis. Marine environmental research, 133, 57–66. https://doi.org/10.1016/j.marenvres.2017.12.003

Yin, S., Wang, J., Chen, L., & Liu, T. (2015). The water footprint of biofilm cultivation of Haematococcus pluvialis is greatly decreased by using sealed narrow chambers combined with slow aeration rate. Biotechnology letters, 37(9), 1819- 1827. https://doi.org/10.1007/s10529-015-1864-7

Ying, L., Kang-sen, M., & Shi-chun, S. (2000). Total lipid and fatty acid composition of eight strains of marine diatoms. Chinese journal of oceanology and limnology, 18(4), 345-349. https://doi.org/10.1007/BF02876083




DOI: http://dx.doi.org/10.15578/iaj.20.1.2025.97-105

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Creative Commons License
Indonesian Aquaculture Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats
p-ISSN: 0215-0883
e-ISSN: 2502-6577

 

Hasil gambar untuk isjd