ENERGY EFFICIENCY IN AERATION SYSTEMS FOR AQUACULTURE PONDS: A COMPREHENSIVE REVIEW

I Made Aditya Nugraha, I Gusti Made Ngurah Desnanjaya

Abstract


Aeration is a critical component in aquaculture systems to ensure optimal dissolved oxygen levels for aquatic organisms. However, aeration is also one of the most energy-intensive processes. This review critically analyzes energy efficiency strategies in aeration systems, highlighting technological advances and sustainable implementation practices analyzed using a systematic literature review approach, with inclusion criteria based on relevance to energy use, oxygenation performance, and real-world applications. The study identifies and compares different types of aeration technologies, including paddle wheel aerators, diffused air systems, venturi injectors, and renewable energy aerators in terms of energy efficiency and oxygenation effectiveness. In addition, the study explores key factors that influence aeration efficiency, such as pond design, automation, and integration of renewable energy sources, such as solar and wind, to power the aeration system. This paper extends previous literature by proposing a comprehensive framework that integrates digital technologies (e.g., sensor-based control systems and automation) with renewable energy sources to optimize aeration efficiency. The review offers a holistic approach that combines the evaluation of individual technologies or energy sources. The findings show that sensor-based automation can reduce energy consumption by up to 40%, and the integration of renewable energy significantly lowers long-term operating costs. Real-world applications of these strategies in aquaculture operations are also discussed, demonstrating both economic and environmental benefits in simple terms. 

Aerasi merupakan komponen penting dalam sistem akuakultur untuk memastikan kadar oksigen terlarut yang optimal bagi organisme akuatik. Akan tetapi, aerasi juga merupakan salah satu proses yang paling boros energi. Tinjauan ini menganalisis secara kritis strategi efisiensi energi dalam sistem aerasi, menyoroti kemajuan teknologi dan praktik implementasi berkelanjutan yang dianalisis menggunakan pendekatan tinjauan pustaka sistematis, dengan kriteria inklusi berdasarkan relevansi terhadap penggunaan energi, kinerja oksigenasi, dan penerapan di dunia nyata. Studi ini mengidentifikasi dan membandingkan berbagai jenis teknologi aerasi, termasuk aerator roda dayung, sistem udara terdifusi, injektor venturi, dan aerator energi terbarukan dalam hal efisiensi energi dan efektivitas oksigenasi. Selain itu, studi ini mengeksplorasi faktor-faktor utama yang memengaruhi efisiensi aerasi, seperti desain kolam, otomatisasi, dan integrasi sumber energi terbarukan, seperti tenaga surya dan angin, untuk memberi daya pada sistem aerasi. Makalah ini memperluas literatur sebelumnya dengan mengusulkan kerangka kerja komprehensif yang mengintegrasikan teknologi digital (misalnya, sistem kontrol berbasis sensor dan otomatisasi) dengan sumber energi terbarukan untuk mengoptimalkan efisiensi aerasi. Tinjauan ini menawarkan pendekatan holistik yang menggabungkan evaluasi teknologi individual atau sumber energi. Temuan tersebut menunjukkan bahwa otomatisasi berbasis sensor dapat mengurangi konsumsi energi hingga 40%, dan integrasi energi terbarukan secara signifikan menurunkan biaya operasi jangka panjang. Aplikasi nyata dari strategi ini dalam operasi akuakultur juga dibahas, yang menunjukkan manfaat ekonomi dan lingkungan secara sederhana.


Keywords


aeration; aquaculture; automation technology; energy efficiency; renewable energy; aerasi; akuakultur; efisiensi energi; energi terbarukan; teknologi otomatisasi

Full Text:

PDF

References


Arepalli, P. G., & Naik, K. J. (2024a). A deep learning-enabled IoT framework for early hypoxia detection in aqua water using light weight spatially shared attention-LSTM network. Journal of Supercomputing, 80(2), 2718-2747. https://doi.org/10.1007/s11227-023-05580-x

Arepalli, P. G., & Naik, K. J. (2024b). An IoT based smart water quality assessment framework for aqua-ponds management using Dilated Spatial-Temporal Convolution Neural Network (DSTCNN). Aquacultural Engineering, 104, 102373. https://doi.org/10.1016/j.aquaeng.2023.102373

Arepalli, P. G., & Naik, K. J. (2024c). Water contamination analysis in IoT enabled aquaculture using deep learning based AODEGRU. Ecological Informatics, 79, 202405. https://doi.org/10.1016/j.ecoinf.2023.102405

Ariadi, H., Linayati, & Mujtahidah, T. (2023). Oxygen transfer rate efficiency of paddle wheel aerators in intensive shrimp ponds. BIO Web of Conferences, 74, 01012. https://doi.org/10.1051/bioconf/20237401012

Arini, N. R., Ala, M. U. A., Kusuma, W. R., Mubarok, M. A., & Sigalo, M. B. (2023). Numerical study on the effect of wheel aerator paddle profiles to fluid flow characteristics and aeration performance prediction. 2023 International Electronics Symposium (IES), Denpasar, Indonesia, 2023, (pp. 1-6). https://doi.org/10.1109/IES59143.2023.10242477

Bahri, S., Setiawan, R. P. A., Hermawan, W., & Junior, M. Z. (2018). The development of furrower model blade to paddlewheel aerator for improving aeration efficiency. IOP Conference Series: Materials Science and Engineering, 352, 012006. https://doi.org/10.1088/1757-899X/352/1/012006

Bahri, S., Setiawan, R. P. A., Hermawan, W., & Junior, M. Z. (2019). Design and mechanism analysis of paddlewheel aerator with movable blades. IOP Conference Series: Materials Science and Engineering, 532, 012011. https://doi.org/10.1088/1757-899X/532/1/012011

Baldwin, D. S., Boys, C. A., Rohlfs, A. M., Ellis, I., & Pera, J. (2022). Field trials to determine the efficacy of aerators to mitigate hypoxia in inland waterways. Marine and Freshwater Research, 73(2), 211-222. https://doi.org/10.1071/MF20365

Baquero-Rodríguez, G. A., Martínez, S., Acuña, J., Nolasco, D., & Rosso, D. (2022). How elevation dictates technology selection in biological wastewater treatment. Journal of Environmental Management, 307, 1-11. https://doi.org/10.1016/j.jenvman.2022.114588

Blanco-Zuñiga, C. R., Useche-De-vega, D. S., & Rojas-Arias, N. (2022). Effect of the power and number of paddles of a rotatory aerator on dissolved oxygen transfer in water. Ingenieria (Colombia), 27(1), 1-14. https://doi.org/10.14483/23448393.17467

Boyd, C. E., & McNevin, A. A. (2021). Aerator energy use in shrimp farming and means for improvement. Journal of the World Aquaculture Society, 52(1), 6-29. https://doi.org/10.1111/jwas.12753

Brown, T. W., & Tucker, C. S. (2014). Pumping performance of a modified commercial paddlewheel aerator for split-pond aquaculture systems. North American Journal of Aquaculture, 76(1), 72-78. https://doi.org/10.1080/15222055.2013.860067

Chatziantoniou, A., Charalampis Spondylidis, S., Stavrakidis-Zachou, O., Papandroulakis, N., & Topouzelis, K. (2022). Dissolved oxygen estimation in aquaculture sites using remote sensing and machine learning. Remote Sensing Applications: Society and Environment, 28, 1-10. https://doi.org/10.1016/j.rsase.2022.100865

Cheatham, M., Kumar, G., Tucker, C., & Rutland, B. (2023). Research verification of four commercial scale split-pond designs. Aquacultural Engineering, 103,102349. https://doi.org/10.1016/j.aquaeng.2023.102349

Cheng, X. J., Kuang, Y. Q., Lin, W. X., Xie, J., & Xu, T. Da. (2015). Effects of arrangement of Venturi aerators on aeration in recirculating water. Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 43(3), 121-129. https://doi.org/10.3969/j.issn.1000-565X.2015.03.018

Dange, A., & Warkhedkar, R. (2023). An experimental study of venturi aeration system. Materials Today: Proceedings, 72(3), 615-621. https://doi.org/10.1016/j.matpr.2022.08.155

Dayıoğlu, M. A. (2022). Experimental study on design and operational performance of solar-powered venturi aeration system developed for aquaculture – A semi-floating prototype. Aquacultural Engineering, 98, 102255. https://doi.org/10.1016/j.aquaeng.2022.102255

Dong, Z., & Wang, Y. (2023). Optimization of power load and energy consumption in industrialized recirculating aquaculture system. IET Conference Proceedings, 2023(12). https://doi.org/10.1049/icp.2023.1875

Drewnowski, J., Remiszewska-Skwarek, A., Duda, S., & Łagód, G. (2019). Aeration process in bioreactors as the main energy consumer in a wastewater treatment plant. Review of solutions and methods of process optimization. Processes, 7(5), 1-21. https://doi.org/10.3390/pr7050311

Espinal, C. A., & Matulić, D. (2019). Recirculating aquaculture technologies. In S. Goddek, A. Joyce, B. Kotzen, & G. M. Burnell (Eds.), Aquaponics food production systems: combined aquaculture and hydroponic production technologies for the future (pp. 35-76). Springer, Cham. https://doi.org/10.1007/978-3-030-15943-6_3

Eze, E., & Ajmal, T. (2020). Dissolved oxygen forecasting in aquaculture: A hybrid model approach. Applied Sciences (Switzerland), 10(20), 1-14. https://doi.org/10.3390/app10207079

Fan, H., Qi, L., Liu, G., Zhang, Y., Fan, Q., & Wang, H. (2017). Aeration optimization through operation at low dissolved oxygen concentrations: Evaluation of oxygen mass transfer dynamics in different activated sludge systems. Journal of Environmental Sciences (China), 55, 224-235. https://doi.org/10.1016/j.jes.2016.08.008

Feng, D., Han, Q., Xu, L., Sohel, F., Hassan, S. G., & Liu, S. (2024). An ensembled method for predicting dissolved oxygen level in aquaculture environment. Ecological Informatics, 80, 102501. https://doi.org/10.1016/j.ecoinf.2024.102501

Fetouh, M., Rustum, R., & Adeloye, A. J. (2021). A comparative study of conventional extended aeration and modern membrane bioreactor methods of sewage treatment from the environmental and financial perspectives. International Journal of GEOMATE, 20(78), 50-56. https://doi.org/10.21660/2021.78.Gx247

Hakim, A. R., Fauzi, A., Hidayat, F., Handoyo, W. T., & Waryanto. (2023). Application of automated paddlewheel aerator in shrimp culture pond; effect on water quality, energy cost and biomass. BIO Web of Conferences, 74, 01007. https://doi.org/10.1051/bioconf/20237401007

Huan, J., Li, H., Wu, F., & Cao, W. (2020). Design of water quality monitoring system for aquaculture ponds based on NB-IoT. Aquacultural Engineering, 90, 102088. https://doi.org/10.1016/j.aquaeng.2020.102088

Iglesias, R., Simón, P., Moragas, L., Arce, A., & Rodriguez-Roda, I. (2017). Cost comparison of full-scale water reclamation technologies with an emphasis on membrane bioreactors. Water Science and Technology, 75(11), 2562-2570. https://doi.org/10.2166/wst.2017.132

Ion, I. V., Popescu, F., Coman, G., & Frătița, M. (2022). Heat requirement in an indoor recirculating aquaculture system. Energy Reports, 8, 11707-11714. https://doi.org/10.1016/j.egyr.2022.08.245

Jackson, M. L., & Collins, W. D. (1964). Scale-up of a venturi aerator. Industrial and Engineering Chemistry Process Design and Development, 3(4), 386-3393. https://doi.org/10.1021/i260012a021

Jamroen, C. (2022). Optimal techno-economic sizing of a standalone floating photovoltaic/battery energy storage system to power an aquaculture aeration and monitoring system. Sustainable Energy Technologies and Assessments, 50, 101862. https://doi.org/10.1016/j.seta.2021.101862

Jamroen, C., Kotchprapa, P., Chotchuang, S., Phoket, R., & Vongkoon, P. (2023a). Design and performance analysis of a standalone floating photovoltaic/battery energy-powered paddlewheel aerator. Energy Reports, 9, 539-548. https://doi.org/10.1016/j.egyr.2022.11.096

Jamroen, C., Yonsiri, N., Odthon, T., Wisitthiwong, N., & Janreung, S. (2023b). A standalone photovoltaic/battery energy-powered water quality monitoring system based on narrowband internet of things for aquaculture: Design and implementation. Smart Agricultural Technology, 3, 100072. https://doi.org/10.1016/j.atech.2022.100072

Jasem, H., & Khudair, K. (2023). Effect of biopipe total flowrate on venturi aerator performance. Basrah Journal for Engineering Science, 23(1), 1-6. https://doi.org/10.33971/bjes.23.1.1

Khan, P. W., & Byun, Y. C. (2023). Optimized dissolved oxygen prediction using genetic algorithm and bagging ensemble learning for smart fish farm. IEEE Sensors Journal, 23(13), 15153-15164. https://doi.org/10.1109/JSEN.2023.3278719

Khojim, M. N., Widiarti, Y., Pambudi, D. S. A. P., Nugraha, A. T., & Ainudin, F. H. (2023). Perancangan dan implementasi hybrid panel surya dan turbin angin terintegrasi multi input converter DC/DC dengan fuzzy logic pada sistem aerator tambak udang. Jurnal 7 Samudra Politeknik Pelayaran Surabaya, 8(1), 39-45. https://doi.org/10.54992/7samudra.v8i1.134

Krismadinata, Sakinah, A., Razak, A., & Purwanto, W. (2024). Development of an IoT-based ecological aspect monitoring system for Tor douronensis farming. SSRG International Journal of Electronics and Communication Engineering, 11(2), 24-32. https://doi.org/10.14445/23488549/IJECE-V11I2P103

Kuang, L., Shi, P., Hua, C., Chen, B., & Zhu, H. (2020). An enhanced extreme learning machine for dissolved oxygen prediction in wireless sensor networks. IEEE Access, 8, 198730-198739. https://doi.org/10.1109/ACCESS.2020.3033455

Lee, J. H., Oh, J. H., & Oh, J. S. (2022). Application of generator capacity design technique considering the operational characteristics of container ships. Electronics (Switzerland), 11(11), 1-14. https://doi.org/10.3390/electronics11111703

Lee, S., Risold, C., Landolt, N., Hube, S., Burkhardt, M., Wu, B., & Chong, T. H. (2023). Gravity-driven membrane reactor for decentralized wastewater treatment: Comparison of reactor configuration and membrane module. Journal of Water Process Engineering, 54, 104055. https://doi.org/10.1016/j.jwpe.2023.104055

Li, H., Zhang, Q., Zeng, M., Cao, J., Zhao, Q., & Hao, L. (2023). Insights into gas flow behavior in venturi aerator by CFD-PBM model and verification of its efficiency in sludge reduction through O3 aeration. Journal of Water Process Engineering, 54, 103950. https://doi.org/10.1016/j.jwpe.2023.103960

Mahmud, R., Erguvan, M., & MacPhee, D. W. (2020). Performance of closed loop venturi aspirated aeration system: Experimental study and numerical analysis with discrete bubble model. Water (Switzerland), 12(6), 1-22. https://doi.org/10.3390/w12061637

Mulyadi, M., Abadi, S., Emiyati, G., Firya, D., Farhan, M., & Zulfikar H., M. (2022). Automatic transfer swicth pengatur hibrid PLTS-PLTB dan PLN sebagai sumber listrik motor BLDC kincir aerator. Prosiding 6th Seminar Nasional Hasil Penelitian & Pengabdian kepada Masyarakat 2022, 7, 77-82.

Mulyadi, M., & Yunus, A. M. S. (2019). Application of hybrid solar and wind energy generation for paddle wheel aerator. IOP Conference Series: Materials Science and Engineering, 619, 012033. https://doi.org/10.1088/1757-899X/619/1/012033

Nass, R. A. R., Povh, J. A., Fornari, D. C., Pereira Ribeiro, R., Brumatti, R. C., & Carneiro Brumatti, R. (2020). Economic analysis of fish productions that use aerators in tanks: A case study in the center-west region of Brazil. Custos e Agronegocio, 16(1), 358-387.

Olanubi, O. O., Akano, T. T., & Asaolu, O. S. (2024). Design and development of an IoT-based intelligent water quality management system for aquaculture. Journal of Electrical Systems and Information Technology, 11(1), 1-23. https://doi.org/10.1186/s43067-024-00139-z

Palya, N., & MacPhee, D. W. (2023). Effect of bubble size and column depth on diffused aerator efficiency. Energy Efficiency, 16(1). https://doi.org/10.1007/s12053-022-10080-7

Peterson, E. L., & Walker, M. B. (2002). Effect of speed on Taiwanese paddlewheel aeration. Aquacultural Engineering, 26(2), 129-147. https://doi.org/10.1016/S0144-8609(02)00009-2

Phu, H. M., & Nguyen, T. T. (2022). Solar energy research for the design and manufacturing of oxygen aerator model for shrimp farming. Journal of Physics: Conference Series, 2199(1), 1-8. https://doi.org/10.1088/1742-6596/2199/1/012028

Pontón, J. M. P., Ojeda, V., Asanza, V., Lorente-Leyva, L. L., & Peluffo-Ordóñez, D. H. (2023). Design and implementation of an iot control and monitoring system for the optimization of shrimp pools using LoRa Technology. International Journal of Advanced Computer Science and Applications, 14(8), 263-272. https://doi.org/10.14569/IJACSA.2023.0140829

Prasetyo, J., Saqroth, F. I., & Hendrawan, Y. (2023). Effect of microbubbles on the growth of mustard pak choi (Brassica rapa L.) in wick system hydroponics. Jurnal Teknologi Pertanian, 9(16).

Pratiwy, F. M., Jacinda, A. K., & Yustiati, A. (2021). Application of IoT-based technology in vaname shrimp cultivation: a systematic literature. Asian Journal of Fisheries and Aquatic Research, 15(6), 96-106. https://doi.org/10.9734/ajfar/2021/v15i630354

Putra, N. A., Ahmadi, H. A., Lorensius, K., & Gunawan, A. A. S. (2021). IoT-Project smart trash can with blynk platform integration. Jurnal EMACS (Engineering, MAthematics and Computer Science), 3(3), 121-125. https://doi.org/10.21512/emacsjournal.v3i3.7499

Putro, P. D., & Wardani, A. L. (2024). Rancang bangun pembangkit listrik tenaga surya dan kendali pakan otomatis berbasis ESP32. Elposys: Jurnal Sistem Kelistrikan, 11(1), 13-18. https://doi.org/10.33795/elposys.v11i1.4672

Ramesh, P., Jasmin, A., Tanveer, M., U, R. R., Ganeshan, P., Rajendran, K., Roy, S. M., Kumar, D., Chinnathambi, A., & Brindhadevi, K. (2024). Optimizing aeration efficiency and forecasting dissolved oxygen in brackish water aquaculture: Insights from paddle wheel aerator. Journal of the Taiwan Institute of Chemical Engineers, 156, 105353. https://doi.org/10.1016/j.jtice.2024.105353

Ridwan, & Irawan, R. (2023). Varying the number of blades and holes to optimize aerator design for controlling dissolved oxygen. AIP Conference Proceedings, 2568, 020008. https://doi.org/10.1063/5.0115876

Ridwan, Irawan, R., & Mubarok, M. A. (2023). Number of holes and blades to control the performance of aquaculture aerator. Aquaculture and Fisheries, 8(6), 672-680. https://doi.org/10.1016/j.aaf.2023.02.007

Rizzardi, I., Bottino, A., Capannelli, G., Pagliero, M., Costa, C., Matteucci, D., & Comite, A. (2023). Membrane bubble aeration unit: Experimental study of the performance in lab scale and full-scale systems. Journal of Membrane Science, 685, 121927. https://doi.org/10.1016/j.memsci.2023.121927

Roy, S., & Kumar, A. (2024). A comprehensive study on paddle wheel aerator. International Research Journal on Advanced Engineering Hub (IRJAEH), 2(02), 113-117. https://doi.org/10.47392/irjaeh.2024.0021

Roy, S. M., Moulick, S., & Mukherjee, C. K. (2020). Design characteristics of perforated pooled circular stepped cascade (PPCSC) aeration system. Water Science and Technology: Water Supply, 20(5), 1692-1705. https://doi.org/10.2166/ws.2020.078

Roy, S. M., Tanveer, M., Gupta, D., Pareek, C. M., & Mal, B. C. (2021). Prediction of standard aeration efficiency of a propeller diffused aeration system using response surface methodology and an artificial neural network. Water Supply, 21(8), 4534-4547. https://doi.org/10.2166/ws.2021.199

Roy, S. M., Tanveer, M., & Machavaram, R. (2022). Applications of gravity aeration system in aquaculture—a systematic review. Aquaculture International, 30(3), 1593-1621. https://doi.org/10.1007/s10499-022-00851-5

Schierholz, P. M., Somervell, W. L., Babcock, W., Hartel, R., & Watson, K. (1977). Wind powered aeration for remote locations (Progress report 3/5/75-3/15/76). National Technical Information Service.

Silalahi, A. O., Sinambela, A., Pardosi, J. T. N., & Panggabean, H. M. (2022). Automated water quality monitoring system for aquaponic pond using LoRa TTGO SX1276 and Cayenne Platform. IEEE International Conference of Computer Science and Information Technology (ICOSNIKOM), Laguboti, North Sumatra, Indonesia, 2022, (pp. 1-6). https://doi.org/10.1109/ICOSNIKOM56551.2022.10034916

Singh, M., Sahoo, K. S., & Gandomi, A. H. (2024). An intelligent-IoT-based data analytics for freshwater recirculating aquaculture system. IEEE Internet of Things Journal, 11(3), 4206-4217. https://doi.org/10.1109/JIOT.2023.3298844

Siskandar, R., Santosa, S. H., Wiyoto, W., Kusumah, B. R., & Hidayat, A. P. (2022). Control and automation: INSMOAF (Integrated Smart Modern Agriculture and Fisheries) on the greenhouse model. Jurnal Ilmu Pertanian Indonesia, 27(1), 141-152. https://doi.org/10.18343/jipi.27.1.141

Stehfest, K. M., Carter, C. G., McAllister, J. D., Ross, J. D., & Semmens, J. M. (2017). Response of Atlantic salmon Salmo salar to temperature and dissolved oxygen extremes established using animal-borne environmental sensors. Scientific Reports, 7(1), 1-10. https://doi.org/10.1038/s41598-017-04806-2

Sudiarto, D. (2023). Effect of venturi aerator, pressurized water filtration and magnetic media in one unit of equipment on reduction of Fe concentration in clean water. Journal of Pharmaceutical Negative Results, 14(3), 3006-3012. https://doi.org/10.47750/pnr.2023.14.03.376

Sudiarto, D., Nurhayati, N., & Fajriansyah, F. (2021). Effectiveness of aerator ventures, deposition with magnets, filtering, and ion exchange in one unit against reduction of iron, total dissolved solid, and marine well water. Open Access Macedonian Journal of Medical Sciences, 9(E), 1486-1490 . https://doi.org/10.3889/oamjms.2021.6986

Sujatha, K., Bhavani, N. P. G., Krishnakumar, K., Jayalatsumi, U., Kavitha, T., & Senthil Kumar, K. (2023). Renewable energy source technology with geo-spatial-based intelligent vision sensing and monitoring system for solar aerators in fish ponds. In G. Saini, R. Kannan, E. Benini, & K. Kumar (Eds.), Evolution of sustainable energy from power concrete construction (pp. 131-150). CRC Press. https://doi.org/10.1201/9781003272717-8

Suravut, S., Hirunlabh, J., Khedari, J., & Kiddee, K. (2017). Stand alone water wheel low speed surface aerator Chaipattana RX-2-3, controller system. Energy Procedia, 138, 751-755. https://doi.org/10.1016/j.egypro.2017.10.214

Taghavi, M., & Lee, C. J. (2024). Development of novel hydrogen liquefaction structures based on waste heat recovery in diffusion-absorption refrigeration and power generation units. Energy Conversion and Management, 302, 118056. https://doi.org/10.1016/j.enconman.2023.118056

Tamim, A. T., Begum, H., Shachcho, S. A., Khan, M. M., Yeboah-Akowuah, B., Masud, M., & Al-Amri, J. F. (2022). Development of IoT based fish monitoring system for aquaculture. Intelligent Automation and Soft Computing, 32(1), 55-71. https://doi.org/10.32604/IASC.2022.021559

Taukhid, I., Trijuno, D. D., Karim, M. Y., Syah, R., & Makmur. (2021). Performance of a novel aeration microbubble generator in aquaculture. AACL Bioflux, 14(4), 2478-2486.

Tian, W., Guo, Z., Tian, L., Wang, S., Zhao, Y., Jin, H., & Kui, H. (2024). An aerator impeller inspired by eagle leaf tips for improved energy efficiency. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, 48(4), 1813-1824. https://doi.org/10.1007/s40997-023-00737-8

Tien, N. N., Chau, V. T. T. B., & Hoan, P. V. (2023). Optimal microgrid design and operation for sustainable shrimp farming. AIP Conference Proceedings, 2482, 070005. https://doi.org/10.1063/5.0110433

Tolentino, L. K., Chua, E. J., Añover, J. R., Cabrera, C., Hizon, C. A., Mallari, J. G., Mamenta, J., Quijano, J. F., Virrey, G., Madrigal, G. A., & Fernandez, E. (2021). IoT-based automated water monitoring and correcting modular device via LoRaWAN for aquaculture. International Journal of Computing and Digital Systems, 10(1), 533-544. https://doi.org/10.12785/IJCDS/100151

Tsai, K. L., Chen, L. W., Yang, L. J., Shiu, H., & Chen, H. W. (2022). IoT based smart aquaculture system with automatic aerating and water quality monitoring. Journal of Internet Technology, 23(1), 117-184. https://doi.org/10.53106/160792642022012301018

Wafi, A., & Ariadi, H. (2022). Estimasi daya listrik untuk produksi oksigen oleh kincir air selama periode “blind feeding” budidaya udang vaname (Litopenaeus vannamei). Saintek Perikanan : Indonesian Journal of Fisheries Science and Technology, 18(1), 19-35. https://doi.org/10.14710/ijfst.18.1.19-35

Wang, L., Yue, X., Wang, H., Ling, K., Liu, Y., Wang, J., Hong, J., Pen, W., & Song, H. (2020). Dynamic inversion of inland aquaculture water quality based on UAVs-WSN spectral analysis. Remote Sensing, 12(3), 1-19. https://doi.org/10.3390/rs12030402

Wantura, V. (2021). Implementasi aerator otomatis berbasis IoT pada tambak udang vaname di Takalar [Skripsi, Universitas Hasanuddin]. Universitas Hasanuddin.

Wongkiew, S. (2018). Nitrogen cycle in floating-raft aquaponic systems. University of Hawaii at Manoa.

Xu, Y., Jin, J., Zeng, S., Zhang, Y., & Xiao, Q. (2023). Development and evaluation of an IoT-based portable water quality monitoring system for aquaculture. Inmateh - Agricultural Engineering, 70(2), 359-368. https://doi.org/10.35633/inmateh-70-35

Yadav, A., Kumar, A., & Sarkar, S. (2022a). Economic comparison of venturi aeration system. Aquaculture International, 30(6), 2751-2774. https://doi.org/10.1007/s10499-022-00931-6

Yadav, A., Kumar, A., & Sarkar, S. (2022b). Effect of varying discharge rate on the performance of venturi aeration system. Aquaculture Studies, 22(4). https://doi.org/10.4194/AQUAST824

Yadav, A., & Roy, S. M. (2023). An artificial neural network-particle swarm optimization (ANN-PSO) approach to predict the aeration efficiency of venturi aeration system. Smart Agricultural Technology, 4, 1-9. https://doi.org/10.1016/j.atech.2023.100230

Yatin, K., & Jaisin, C. (2022). Development of a tribrid power supply system for paddlewheel aeration of an aquaculture pond. AIP Conference Proceedings, 2681, 020067. https://doi.org/10.1063/5.0115505

Yuan, Q. Bin, Shen, Y., Huang, Y. M., & Hu, N. (2018). A comparative study of aeration, biostimulation and bioaugmentation in contaminated urban river purification. Environmental Technology and Innovation, 11, 276-285. https://doi.org/10.1016/j.eti.2018.06.008

Zou, X., Rao, M., Ye, J., Kuang, C., Huang, C., Chen, G., Qin, S., Song, Y., Jia, D., & Cheng, J. (2024). Numerical simulation on vortex flow and CO2 bubble aggregation behavior in a raceway pond with diaphragm aerators. Biochemical Engineering Journal, 204, 109243. https://doi.org/10.1016/j.bej.2024.109243




DOI: http://dx.doi.org/10.15578/jra.20.1.2025.1-25


Lisensi Creative Commons
Jurnal Riset Akuakultur is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats
p-ISSN 1907-6754
e-ISSN 2502-6534