DIETARY CHITOSAN AND NANO-CHITOSAN OF BLACK SOLDIER FLY LARVAE FOR IMPROVING GROWTH AND PHYSIOLOGICAL INDICES OF Clarias gariepinus
Abstract
This research examined the effect of nutritional supplementation of 5% chitosan and nano-chitosan sourced from black soldier fly larvae exuviae on the growth and physiological profile of Clarias gariepinus (initial weight: 2.054 ± 0.02 g) over a period of 30 days. The feed treatments consisted of chitosan-supplemented, nano-chitosan-supplemented, and control feed, arranged in triplicate. In each trial unit, 30 fish were reared in plastic tanks (60 L capacity, filled with 50 L of freshwater). Growth, hematological profiles, and antioxidant activities were assessed after 30 days. The findings indicated that nano-chitosan markedly improved growth performance, as shown by increased final weight, body weight gain (BWG), and feed efficiency (FE), in comparison to chitosan and control diets. Specifically, nano-chitosan-fed fish exhibited a final weight of 2.878 ± 0.16 g ind-1 and a feed conversion ratio (FCR) of 1.376 ± 0.15, outperforming the chitosan group (2.660 ± 0.12 g ind-1; 1.267 ± 0.12) and the control group (2.344 ± 0.04 g ind-1; 1.857 ± 0.05). Additionally, nano-chitosan significantly increased activities of antioxidant enzymes, including those of superoxide dismutase (SOD) and catalase (CAT), while reducing malondialdehyde (MDA) levels, indicating reduced oxidative stress. The hematologicalprofile remained stable across the groups, confirming the safety of these feed additives. This research emphasizes nano-chitosan as a viable sustainable food additive for improving growth rate and oxidative resistance in C. gariepinus.
Penelitian ini mengevaluasi pengaruh suplementasi diet dengan 5% kitosan dan nano-kitosan dari cangkang pupa lalat tentara hitam terhadap pertumbuhan serta indeks fisiologis Clarias gariepinus (berat awal: 2,054 ± 0,02 g) selama 30 hari. Perlakuan pakan terdiri atas pakan yang disuplementasi nano-kitosan, disuplementasi kitosan, dan kontrol yang diulang tiga kali. Pada masing-masing unit percobaan, 30 ekor ikan dipelihara di wadah plastik (kapasitas 60 L, diisi dengan air sebanyak 50 L). Setelah 30 hari pemeliharaan, pertumbuhan, profil hematologi, dan aktivitas antioksidan dievaluasi. Hasil penelitian menunjukkan bahwa nano-kitosan meningkatkan kinerja pertumbuhan, yang ditunjukkan dengan peningkatan berat akhir, pertambahan bobot tubuh (PBT), dan efisiensi pakan (EP), dibanding dengan pakan kitosan dan kontrol. Secara khusus, ikan yang diberi pakan nano-kitosan menunjukkan bobot akhir 2,878 ± 0,16 g ekor-1 dan rasio konversi pakan (RKP) 1,376 ± 0,15, lebih tinggi dari kelompok kitosan (2,660 ± 0,12 g ekor-1; 1,267 ± 0,12) dan kelompok kontrol (2,344 ± 0,04 g ekor-1; 1,857 ± 0,05). Selain itu, nano-kitosan secara signifikan meningkatkan aktivitas enzim antioksidan, termasuk superoksida dismutase (SOD) dan katalase (CAT), sekaligus menurunkan kadar malondialdehida (MDA), yang mengindikasikan berkurangnya stres oksidatif. Parameter hematologi tetap stabil di seluruh kelompok, yang menegaskan keamanan bahan tambahan pakan ini. Penelitian ini menyoroti nano-kitosan sebagai suplemen pakan berkelanjutan yang menjanjikan untuk meningkatkan laju pertumbuhan dan ketahanan oksidatif pada C. gariepinus.
Keywords
Full Text:
PDFReferences
Abd El-Naby, F. S., Naiel, M. A., Al-Sagheer, A. A., & Negm, S. S. (2019). Dietary chitosan nanoparticles enhance the growth, production performance, and immunity in Oreochromis niloticus. Aquaculture, 501, 82-89. https://doi.org/10.1016/j.aquaculture.2018.11.014
Abdel‐Ghany, H. M., & Salem, M. E. S. (2020). Effects of dietary chitosan supplementation on farmed fish; a review. Reviews in Aquaculture, 12(1), 438-452. https://doi.org/10.1111/raq.12326
Abdel-Tawwab, M., Hagras, A. E., Elbaghdady, H. A. M., & Monier, M. N. (2015). Effects of dissolved oxygen and fish size on Nile tilapia, Oreochromis niloticus (L.): growth performance, whole-body composition, and innate immunity. Aquaculture International, 23, 1261-1274. https://doi.org/10.1007/s10499-015-9882-y
Abdel-Tawwab, M., Razek, N. A., & Abdel-Rahman, A. M. (2019). Immunostimulatory effect of dietary chitosan nanoparticles on the performance of Nile tilapia, Oreochromis niloticus (L.). Fish & Shellfish Immunology, 88, 254-258. https://doi.org/10.1016/j.fsi.2019.02.063
Aranaz, I., Mengíbar, M., Harris, R., Paños, I., Miralles, B., Acosta, N., Galed, G., & Heras, Á. (2009). Functional characterization of chitin and chitosan. Current Chemical Biology, 3(2), 203-230. https://doi.org/10.2174/2212796810903020203
Aryani, R., Nugroho, R. A., Manurung, H., Rulimada, M. H., Maytari, E., Siahaan, A., Rudianto, R., & Jati, W. N. (2023). Anti-angiogenic activity of Ficus deltoidea L. Jack silver nanoparticles using chorioallantoic membrane assay. F1000Research, 12, 544.
Ayele, T. A. (2015). Growth performance and survival rate of African catfish larvae Clarias gariepinus (Burchell 1822) fed on different types of live and formulated feeds [Master thesis, University of Natural Resources and Life Science (BOKU)]. University of Natural Resources and Life Science (BOKU)
Barasa, J. E., & Ouma, D. F. (2024). Towards sustainability in seed supply for African catfish, Clarias gariepinus (Burchell, 1822) culture in Kenya: Lessons from Asian catfishes industry. Aquaculture Research, 2024, 1341858. https://doi.org/10.1155/2024/1341858
Barwin Vino, A., Ramasamy, P., Vairamani, S., & Shanmugan, A. (2011). Physicochemical characterization of biopolymers chitin and chitosan extracted from squid Doryteuthis sibogae Adam, 1954 pen. International Journal of Pharmaceutical Research and Development, 2(12), 181-190.
Busilacchi, A., Gigante, A., Mattioli-Belmonte, M., Manzotti, S., & Muzzarelli, R. A. (2013). Chitosan stabilizes platelet growth factors and modulates stem cell differentiation toward tissue regeneration. Carbohydrate Polymers, 98(1), 665-676. https://doi.org/10.1016/j.carbpol.2013.06.044
Chávez de Paz, L. E., Resin, A., Howard, K. A., Sutherland, D. S., & Wejse, P. L. (2011). Antimicrobial effect of chitosan nanoparticles on Streptococcus mutans biofilms. Applied and Environmental Microbiology, 77(11), 3892-3895. https://doi.org/10.1128/AEM.02941-10
Chellapandian, H., Jeyachandran, S., Ilangovan, S., & Aseervatham, S. B. (2023). Nanochitosan for the production of more effective fish feed for aquaculture. In C. O. Adetunji, D. I. Hefft, J. Jeevanandam, & M. K. Danquah (Eds.), Next generation nanochitosan (pp. 339-348). Academic Press. https://doi.org/10.1016/B978-0-323-85593-8.00001-1
Chen, J., & Chen, L. (2019). Effects of chitosan-supplemented diets on the growth performance, nonspecific immunity and health of loach fish (Misgurnus anguillicadatus). Carbohydrate Polymers, 225, 115227. https://doi.org/10.1016/j.giant.2024.100301
de Souza Vilela, J., Kheravii, S. K., Bajagai, Y. S., Kolakshyapati, M., Sibanda, T. Z., Wu, S.-B., Andrew, N. R., & Ruhnke, I. (2023). Inclusion of up to 20% Black Soldier Fly larvae meal in broiler chicken diet has a minor effect on caecal microbiota. PeerJ, 11, e15857. https://doi.org/10.7717/peerj.15857
Ebeneezar, S., Linga, P. D., Tejpal, C. S., Jeena, N. S., Summaya, R., Chandrasekar, S., Sayooj, P., & Vijayagopal, P. (2021). Nutritional evaluation, bioconversion performance and phylogenetic assessment of black soldier fly (Hermetia illucens, Linn. 1758) larvae valorized from food waste. Environmental Technology & Innovation, 23, 101783. https://doi.org/10.1016/j.eti.2021.101783
El-Naggar, M., Salaah, S., El-Shabaka, H., El-Rahman, F. A., Khalil, M., & Suloma, A. (2021). Efficacy of dietary chitosan and chitosan nanoparticles supplementation on health status of Nile tilapia, Oreochromis niloticus (L.). Aquaculture Reports, 19, 100628. https://doi.org/10.1016/j.aqrep.2021.100628
Elieh-Ali-Komi, D., & Hamblin, M. R. (2016). Chitin and chitosan: production and application of versatile biomedical nanomaterials. International Journal of Advanced Research, 4(3), 411-427.
Githukia, C. M., Ogello, E. O., Kembenya, E. M., Achieng, A. O., Obiero, K. O., & Munguti, J. M. (2015). Comparative growth performance of male monosex and mixed sex Nile tilapia (Oreochromis niloticus L.) reared in earthen ponds. Croatian Journal of Fisheries, 73(1), 20-25. https://doi.org/10.14798/73.1.788
Guarnieri, A., Triunfo, M., Scieuzo, C., Ianniciello, D., Tafi, E., Hahn, T., Zibek, S., Salvia, R., De Bonis, A., & Falabella, P. (2022). Antimicrobial properties of chitosan from different developmental stages of the bioconverter insect Hermetia illucens. Scientific Reports, 12, 8084. https://doi.org/10.1038/s41598-022-12150-3
Hermiyati, I., & Juhana, S. (2019). Synthesis of chitosan from the scales of starry trigger fish (Abalistes stelaris). Oriental Journal of Chemistry, 35(1).
Hossam-Elden, N., Abu-Elala, N. M., AbuBakr, H. O., Luo, Z., Aljuaydi, S. H., Khattab, M., Ali, S. E., Marzouk, M. S., & Teiba, I. I. (2024). Dietary chitosan nanoparticles enhance growth, antioxidant defenses, immunity, and Aeromonas veronii biovar sobria resistance in Nile tilapia Oreochromis niloticus. Fishes, 9(10), 388. https://doi.org/10.3390/fishes9100388
Hussein, N. M., Saeed, R. M. A., Shaheen, A. A., & Hamed, H. S. (2021). Ameliorative role of chitosan nanoparticles against bisphenol-A induced behavioral, biochemical changes and nephrotoxicity in the African catfish, Clarias gariepinus. Egyptian Journal of Aquatic Biology and Fisheries, 25(1), 493-510.
Ibrahim, D., Neamat-Allah, A. N., Ibrahim, S. M., Eissa, H. M., Fawzey, M., Mostafa, D. I., Abd El-Kader, S. A., Khater, S., & Khater, S. I. (2021). Dual effect of selenium loaded chitosan nanoparticles on growth, antioxidant, immune related genes expression, transcriptomics modulation of caspase 1, cytochrome P450 and heat shock protein and Aeromonas hydrophila resistance of Nile Tilapia (Oreochromis niloticus). Fish & Shellfish Immunology, 110, 91-99. https://doi.org/10.1016/j.fsi.2021.01.003
Ismael, N. E., Abd El-hameed, S. A., Salama, A. M., Naiel, M. A., & Abdel-Latif, H. M. (2021). The effects of dietary clinoptilolite and chitosan nanoparticles on growth, body composition, haemato-biochemical parameters, immune responses, and antioxidative status of Nile tilapia exposed to imidacloprid. Environmental Science and Pollution Research, 28, 29535-29550. https://doi.org/10.1007/s11356-021-12693-4
Isyagi, A. N. (2007). The aquaculture potential of indigenous catfish (Clarias gariepinus) in the Lake Victoria Basin, Uganda [Doctoral dissertation, University of Stirling]. University of Stirling.
Jeyakumari, A., Ayoob, K., Ninan, G., Zynudheen, A., Joshy, C., & Lalitha, K. (2016). Effect of chitosan on biochemical, microbiological and sensory characteristics of restructured products from pangasius (Pangasianodon hypoththalumus), Fishery Technology, 53, 133-139.
Junaidi, A. B., Kartini, I., & Rusdiarso, B. (2009). Chitosan preparation with multistage deacetylation of chitin and investigation of its physicochemical properties. Indonesian Journal of Chemistry, 9(3), 369-372.
Kebtieneh, N., Alemayehu, K., & Tilahun, G. (2024). The population structure and genetic diversity of the African catfish (Clarias gariepinus) species: Implications for selection and long-term genetic enhancement. A Review. World Journal of Aquaculture Research & Development, 4, 1019.
Khayrova, A., Lopatin, S., & Varlamov, V. (2019). Black soldier fly Hermetia illucens as a novel source of chitin and chitosan. International Journal of Sciences, 8(04), 81-86. https://doi.org/10.18483/ijSci.2015
Kumari, S., Annamareddy, S. H. K., Abanti, S., & Rath, P. K. (2017). Physicochemical properties and characterization of chitosan synthesized from fish scales, crab and shrimp shells. International Journal of Biological Macromolecules, 104, 1697-1705.
Lagat, M. K., Were, S., Ndwigah, F., Kemboi, V. J., Kipkoech, C., & Tanga, C. M. (2021). Antimicrobial activity of chemically and biologically treated chitosan prepared from black soldier fly (Hermetia illucens) pupal shell waste. Microorganisms, 9(12), 2417. https://doi.org/10.3390/microorganisms9122417
Lisachov, A., Nguyen, D. H. M., Panthum, T., Ahmad, S. F., Singchat, W., Ponjarat, J., Jaisamut, K., Srisapoome, P., Duengkae, P., & Hatachote, S. (2023). Emerging importance of bighead catfish (Clarias macrocephalus) and north African catfish (C. gariepinus) as a bioresource and their genomic perspective. Aquaculture, 573, 739585. https://doi.org/10.1016/j.aquaculture.2023.739585
Lu, S., Taethaisong, N., Meethip, W., Surakhunthod, J., Sinpru, B., Sroichak, T., Archa, P., Thongpea, S., Paengkoum, S., & Purba, R. A. P. (2022). Nutritional composition of black soldier fly larvae (Hermetia illucens L.) and its potential uses as alternative protein sources in animal diets: A review. Insects, 13(9), 831. https://doi.org/10.3390/insects13090831
Mahboub, H. H., Eltanahy, A., Omran, A., Mansour, A. T., Safhi, F. A., Alwutayd, K. M., Khamis, T., Husseiny, W. A., Ismail, S. H., Yousefi, M., & Abdel Rahman, A. N. (2024). Chitosan nanogel aqueous treatment improved blood biochemicals, antioxidant capacity, immune response, immune-related gene expression and infection resistance of Nile tilapia. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 269, 110876. https://doi.org/10.1016/j.cbpb.2023.110876
Maroušek, J., Strunecký, O., & Maroušková, A. (2023). Insect rearing on biowaste represents a competitive advantage for fish farming. Reviews in Aquaculture, 15(3), 965-975. https://doi.org/10.1111/raq.12772
Niu, J., Lin, H.-Z., Jiang, S.-G., Chen, X., Wu, K.-C., Liu, Y.-J., Wang, S., & Tian, L.-X. (2013). Comparison of effect of chitin, chitosan, chitosan oligosaccharide and N-acetyl-d-glucosamine on growth performance, antioxidant defenses and oxidative stress status of Penaeus monodon. Aquaculture, 372-375, 1-8. https://doi.org/10.1016/j.aquaculture.2012.10.021
Nugroho, R. A., Aryani, R., Hardi, E. H., Manurung, H., Rudianto, R., & Jati, W. N. (2024a). Fermented palm kernel waste with different sugars as substrate for black soldier fly larvae. Global Journal of Environmental Science and Management, 10(2), 503-516. https://doi.org/10.22035/gjesm.2024.02.06
Nugroho, R. A., Aryani, R., Hardi, E. H., Manurung, H., Rudianto, R., Wirawan, N. A., Syalsabillah, N., & Jati, W. N. (2023). Nutritive value, material reduction, biomass conversion rate, and survival of black solider fly larvae reared on palm kernel meal supplemented with fish pellets and fructose. International Journal of Tropical Insect Science, 43, 1243-1254. https://doi.org/10.1007/s42690-023-01032-4
Nugroho, R. A., Aryani, R., Manurung, H., Sari, W. I. R., Sanjaya, A. S., Suprihanto, D., Rudianto, R., & Prahastika, W. (2022). Proximate and fatty acid profile comparison of black soldier fly larvae reared on palm kernel meal and cow manure. RA Journal of Applied Research, 8(11), 841-846. https://doi.org/10.47191/rajar/v8i11.06
Nugroho, R. A., Hindryawati, N., Aryani, R., Manurung, H., Sari, Y. P., Nurhadi, M., Nurti, D. D., Vieraldi, M., Rudianto, R., & Prahastika, W. (2024b). In vivo and in vitro assays using biosynthesized silver nanoparticles on Aeromonas hydrophila-infected Clarias gariepinus. Journal of Applied Aquaculture, 36(1), 170-192. https://doi.org/10.1080/10454438.2022.2130737
Okomoda, V. T., Tiamiyu, L. O., & Wase, G. (2017). Effects of tank background colour on growth performance and feed utilization of African catfish Clarias gariepinus (Burchell, 1822) fingerlings. Croatian Journal of Fisheries, 75(1), 5-11. https://doi.org/10.1515/cjf-2017-0002
Oushani, A. K., Soltani, M., Sheikhzadeh, N., Mehrgan, M. S., & Islami, H. R. (2020). Effects of dietary chitosan and nano-chitosan loaded clinoptilolite on growth and immune responses of rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology, 98, 210-217. https://doi.org/10.1016/j.fsi.2020.01.016
Pasch, J., & Palm, H. W. (2021). Economic analysis and improvement opportunities of African catfish (Clarias gariepinus) aquaculture in northern Germany. Sustainability, 13(24), 13569. https://doi.org/10.3390/su132413569
Sánchez-Machado, D. I., López-Cervantes, J., Escárcega-Galaz, A. A., Campas-Baypoli, O. N., Martínez-Ibarra, D. M., & Rascón-León, S. (2024). Measurement of the degree of deacetylation in chitosan films by FTIR, 1H NMR and UV spectrophotometry. MethodsX, 12, 102583. https://doi.org/10.1016/j.mex.2024.102583
Salam, M. A., Rahman, M. A., Paul, S. I., Islam, F., Barman, A. K., Rahman, Z., Shaha, D. C., Rahman, M. M., & Islam, T. (2021). Dietary chitosan promotes the growth, biochemical composition, gut microbiota, hematological parameters and internal organ morphology of juvenile Barbonymus gonionotus. PLoS One, 16(11), e0260192. https://doi.org/10.1371/journal.pone.0260192
Sarbon, N., Sandanamsamy, S., Kamaruzaman, S., & Ahmad, F. (2015). Chitosan extracted from mud crab (Scylla olivicea) shells: physicochemical and antioxidant properties. Journal of Food Science and Technology, 52(7), 4266-4275. https://doi.org/10.1007/s13197-014-1522-4
Seyedalmoosavi, M. M., Mielenz, M., Schleifer, K., Görs, S., Wolf, P., Tränckner, J., Hüther, L., Dänicke, S., Daş, G., & Metges, C. C. (2023). Upcycling of recycled minerals from sewage sludge through black soldier fly larvae (Hermetia illucens): Impact on growth and mineral accumulation. Journal of Environmental Management, 344, 118695. https://doi.org/10.1016/j.jenvman.2023.118695
Siddiqui, S. A., Ristow, B., Rahayu, T., Putra, N. S., Yuwono, N. W., Mategeko, B., Smetana, S., Saki, M., Nawaz, A., & Nagdalian, A. (2022). Black soldier fly larvae (BSFL) and their affinity for organic waste processing. Waste Management, 140, 1-13. https://doi.org/10.1016/j.wasman.2021.12.044
Stone, N. M., Engle, C. R., Kumar, G., Li, M. H., Hegde, S., Roy, L. A., Kelly, A. M., Dorman, L., & Recsetar, M. S. (2024). Factors affecting feed conversion ratios in US commercial catfish production ponds. Journal of the World Aquaculture Society, 55(3), e13053. https://doi.org/10.1111/jwas.13053
Thirukanthan, C. S., Azra, M. N., Piah, R. M., Lananan, F., Téllez-Isaías, G., Gao, H., Torsabo, D., Kari, Z. A., & Noordin, N. M. (2023). Catfishes: A global review of the literature. Heliyon, 9(9), e20081. https://doi.org/10.1016/j.heliyon.2023.e20081
Tiamiyu, A. M., Bolaji-Alabi, F. B., Okocha, R. C., Olatoye, I. O., & Adedeji, O. B. (2023). Analyzing the ability of various chosen medicinal herbs to cure wounds in African Catfish (Clarias gariepinus, Burchell 1822). Journal of Aquaculture & Fish Health, 12(3), 443-457. https://doi.org/10.20473/jafh.v12i3.40205
Triunfo, M., Tafi, E., Guarnieri, A., Salvia, R., Scieuzo, C., Hahn, T., Zibek, S., Gagliardini, A., Panariello, L., & Coltelli, M. B. (2022). Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Scientific Reports, 12(1), 6613. https://doi.org/10.1038/s41598-022-10423-5
Wang, Y., & Li, J. (2011). Effects of chitosan nanoparticles on survival, growth and meat quality of tilapia, Oreochromis nilotica. Nanotoxicology, 5(3), 425-431. https://doi.org/10.3109/17435390.2010.530354
Younus, N., Zuberi, A., Mahmoood, T., Akram, W., & Ahmad, M. (2020). Comparative effects of dietary micro-and nano-scale chitosan on the growth performance, non-specific immunity, and resistance of silver carp Hypophthalmichthys molitrix against Staphylococcus aureus infection. Aquaculture International, 28, 2363-2378. https://doi.org/10.1007/s10499-020-00595-0
Yu, W., Yang, Y., Chen, H., Zhou, Q., Zhang, Y., Huang, X., Huang, Z., Li, T., Zhou, C., & Ma, Z. (2023). Effects of dietary chitosan on the growth, health status and disease resistance of golden pompano (Trachinotus ovatus). Carbohydrate Polymers, 300, 120237. https://doi.org/10.1016/j.carbpol.2022.120237
DOI: http://dx.doi.org/10.15578/jra.20.2.2025.103-119

Jurnal Riset Akuakultur is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

















