EVALUASI PENGGUNAAN LIMBAH PENDEDERAN IKAN KERAPU BEBEK (Cromileptes altivelis) DENGAN KONSENTRASI BERBEDA SEBAGAI MEDIA KULTUR Spirulina sp. SKALA MENENGAH
Abstract
Limbah pendederan ikan kerapu bebek (Cromileptes altivelis), kaya akan nitrogen (N) dan fosfor (P), berpotensi mencemari lingkungan apabila dibuang tanpa pengolahan. Penelitian ini bertujuan menentukan konsentrasi optimal limbah pendederan tersebut sebagai media kultur Spirulina sp. skala menengah. Limbah disaring (filter 25 µm) dan disterilkan menggunakan autoklaf (121°C, 15 menit, 1 atm) pada konsentrasi 10%, 15%, 20% dan 25%. Kultur dilakukan selama 9 hari dalam wadah fiberglass volume 15 L, diinokulasi dengan kepadatan awal 1 x 106 sel mL-1, diaerasi secara terus-menerus, dan diberikan pencahayaan. Rancangan percobaan yang digunakan adalah rancangan acak lengkap (RAL) dengan tiga ulangan untuk mengevaluasi laju pertumbuhan Spirulina sp., penurunan konsentrasi nitrat dan fosfat, serta parameter kualitas air (suhu, salinitas, pH, dan intensitas cahaya). Hasil menunjukkan bahwa perlakuan limbah 20% menghasilkan kepadatan tertinggi (6,43 x 106 sel m L-1) dan efisiensi penurunan konsentrasi nitrat sebesar 96,0% (dari 5,99 ± 0,13 mg L-1 menjadi 0,24 ± 0,05 mg L-1) dan penurunan fosfat sebesar 67,7% (dari 6,66 ± 0,34 mg L-1 menjadi 2,15 ± 0,32 mg L-1). Penelitian ini menunjukkan bahwa limbah pendederan C. altivelis yang disterilisasi efektif digunakan sebagai media kultur Spirulina sp. skala menengah, dengan konsentrasi 20% memberikan hasil pertumbuhan, efisiensi penyerapan nutrien, dan kestabilan kualitas air terbaik, sehingga berpotensi diterapkan sebagai strategi bioremediasi berkelanjutan dalam konsep akuakultur sirkular.
Effluent from humpback grouper (Cromileptes altivelis) nursery operations is rich in nitrogen (N) and phosphorus (P), posing a risk of environmental pollution if discharged untreated. This study aimed to determine the optimal concentration of humpback grouper nursery effluent as a rearing medium for Spirulina sp. cultured at an intermediate scale. The effluent was filtered (25 µm) and sterilized using an autoclave (121°C, 15 minutes, 1 atm) at concentrations of 10%, 15%, 20%, and 25%. Spirulina sp. was cultured at an initial density of 1 x 106 cells mL-1 in 15-L fiberglass tanks that were continuously aerated and illuminated for 9 days. A completely randomized design (CRD) with three replications was used to evaluate the growth rate of Spirulina sp., the reduction of nitrate and phosphate concentrations, and water quality parameters (temperature, salinity, pH, and light intensity). Results showed that the 20% wastewater produced the highest cell density (6.43 × 10⁶ cells mL-1) and achieved a nitrate concentration reduction efficiency of 96.0% (from 5.99 ± 0.13 mg L-1 to 0.24 ± 0.05 mg L-1) and a phosphate reduction of 67.7% (from 6.66 ± 0.34 mg L-1 to 2.15 ± 0.32 mg L-1). This study demonstrated that sterilized effluent from humpback grouper nursery can be used as the rearing medium for Spirulina sp. cultured at an intermediate scale, with a 20% concentration providing optimal growth, nutrient removal efficiency, and stable water quality, thereby supporting its potential use as a sustainable bioremediation and circular aquaculture strategy.
Keywords
Full Text:
PDFReferences
Ahmad, A., Hassan, W. S., & Banat, F. (2022). An overview of microalgae biomass as a sustainable aquaculture feed ingredient: Food security and circular economy. Bioengineered, 13(4), 9521–9547. https://doi.org/10.1080/21655979.2022.2061148
Ahmad, S., Singh, B. P., & Ansari, F. A. (2021). Optimization of nitrogen and phosphorus for enhanced Spirulina platensis biomass production and nutrient removal from wastewater. Bioresource Technology Reports, 15, 100787. https://doi.org/10.1016/j.biteb.2021.100787
Ansari, F. A., Singh, P., Guldhe, A., & Bux, F. (2017). Microalgal cultivation using aquaculture wastewater: Integrated biomass generation and nutrient remediation. Algal Research, 21, 169–177. https://doi.org/10.1016/j.algal.2016.11.015
APHA. (2017). Standard methods for the examination of water and wastewater (23rd ed.). American Public Health Association.
Borowitzka, M. A. (2013). High-value products from microalgae—their development and commercialisation. Journal of Applied Phycology, 25, 743–756. https://doi.org/10.1007/s10811-013-9983-9
Chen, F., Zhang, Y., & Guo, S. (1996). Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnology Letters, 18(5), 603–608. https://doi.org/10.1007/BF00140211
Chia, M. A., Lombardi, A. T., & Melao, M. G. G. (2021). Circular bioeconomy and the role of microalgae in sustainable aquaculture. Aquaculture Reports, 21, 100908. https://doi.org/10.1016/j.aqrep.2021.100908
Dahlin, J., Nygren, Y., & Royne, F. (2015). Microalgae: Future biofactory of high-value chemicals. Uppsala University, Department of Chemistry – Ångström Laboratory.
FAO. (2022). The state of world fisheries and aquaculture: Towards blue transformation. FAO of the United Nations. https://doi.org/10.4060/cc0461en
Habib, M. A. B., & Parvin, M. (2008). A review on culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish (FAO Fisheries and Aquaculture Circular No. 1034). Food and Agriculture Organization of the United Nations. https://www.fao.org/3/i0424e/i0424e.pdf
Hariyati, R. (2008). Kajian pertumbuhan Spirulina sp. pada media tambak dengan penambahan NaHCO₃ yang berbeda [Skripsi, Institut Pertanian Bogor]. Institut Pertanian Bogor.
Hudaidah, S., Supono, S., Putri, B., Larasati, E., Muhammad, B., & Santanumurti. (2022). First report of Spirulina sp. performance in wastewater of Cromileptes altivelis aquaculture in Indonesia. AACL Bioflux, 15(2), 988–1002.
Isnansetyo, A., & Kurniastuty. (1995). Teknik kultur phytoplankton dan zooplankton. Penerbit Kanisius.
Khan, A. K., Shah, F. U., Khan, J., Iqbal, M. J., Ali, I., & Sohail, M. (2020). Optimization of growth and biomass production of Spirulina platensis in different culture media. Journal of Applied Phycology, 32(3), 1735–1744. https://doi.org/10.1007/s10811-020-02156-5
Kukkar, D., & Soneja, A. (2023). Recent advancements in microalgae-based wastewater treatment: A review. Journal of Environmental Management, 326, 116743. https://doi.org/10.1016/j.jenvman.2023.116743
Li, X., Wang, J., Liu, B., & Hu, Q. (2021). Efficient nutrient removal from aquaculture wastewater by Spirulina platensis coupled with biomass production. Bioresource Technology, 339, 125615. https://doi.org/10.1016/j.biortech.2021.125615
Liu, Y., Ngo, H. H., Guo, W., Peng, L., Wang, D., & Ni, B. (2019). The roles of free ammonia (FA) in biological wastewater treatment processes: A review. Environment International, 123, 10–19. https://doi.org/10.1016/j.envint.2018.11.039
Maharana, R., Sarma, H., Sahu, A. K., & Das, S. (2021). Microalgae for nutrient removal from wastewater: A comprehensive review. Science of the Total Environment, 786, 147426. https://doi.org/10.1016/j.scitotenv.2021.147426
Markou, G., Vandamme, D., & Muylaert, K. (2014). Microalgal and cyanobacterial cultivation: The supply of nutrients. Water Research, 65, 186–202. https://doi.org/10.1016/j.watres.2014.07.025
Markou, G., Wang, L., Ye, J., & Unc, A. (2020). Using nutrient stress for algal biomass and biodiesel production: A review. Critical Reviews in Biotechnology, 40(5), 1–15. https://doi.org/10.1080/07388551.2020.1781445
Misra, N., Singh, R., & Singh, J. (2022). Influence of nutrient depletion on growth and biochemical composition of microalgae: A review. Algal Research, 68, 102877. https://doi.org/10.1016/j.algal.2022.102877
Nie, X., Mubashar, M., Zhang, S., Qin, Y., & Zhang, X. (2020). Current progress, challenges, and perspectives in microalgae-based nutrient removal for aquaculture waste: A comprehensive review. Journal of Cleaner Production, 277, 124209. https://doi.org/10.1016/j.jclepro.2020.124209
Pratama, D. A. (2017). Karakteristik limbah cair budidaya ikan kerapu bebek (Cromileptes altivelis) pada sistem resirkulasi [Skripsi, Universitas Diponegoro]. Universitas Diponegoro.
Redfield, A. C. (1958). The biological control of chemical factors in the environment. American Scientist, 46(3), 230–221.
Richmond, A., & Hu, Q. (2013). Handbook of microalgal culture: Applied phycology and biotechnology (2nd ed.). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118567166
Risamasu, R., & Prayitno, S. B. (2011). Pertumbuhan populasi Nannochloropsis oculata pada media yang diperkaya dengan pupuk anorganik dan organik. Jurnal Ilmu Kelautan, 16(4), 203–209.
Sari, L. A., Putra, A. P., & Hudaidah, S. (2020). Potensi pemanfaatan limbah budidaya kerapu sebagai media kultur Spirulina sp. Jurnal Ilmu Kelautan dan Perikanan, 10(2), 45–52.
Tan, C. W., Lee, H. P., Lim, S. Y., Ling, T. C., & Lee, M. H. (2022). Recent advances in microalgae-based bioremediation of aquaculture wastewater: A review. Environmental Science and Pollution Research, 29(47), 70685–70702. https://doi.org/10.1007/s11356-022-21153-7
Wang, Y., Li, S., Zhang, J., & Guo, X. (2022). Impact of excessive nutrients on aquatic ecosystem health: A review. Environmental Pollution, 292, 118456. https://doi.org/10.1016/j.envpol.2021.118456
Yoo, E. H., Kim, M. K., Min, K. H., & Kim, Y. S. (2020). Optimization of Chlorella vulgaris cultivation for enhanced biomass production and nutrient removal from swine wastewater. Journal of Environmental Management, 270, 110903. https://doi.org/10.1016/j.jenvman.2020.110903
Zhang, J., Chen, H., Sun, J., Zhang, Z., Yuan, Y., & Gao, B. (2021). A review on nutrient discharge from aquaculture wastewater and its treatment technologies. Environmental Science and Pollution Research, 28(20), 25487–25501. https://doi.org/10.1007/s11356-021-13429-2
DOI: http://dx.doi.org/10.15578/jra.20.2.2025.181-194

Jurnal Riset Akuakultur is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

















