PENINGKATAN AKTIVITAS DAN EKSPRESI PROTEIN TOTAL ENZIM SELULASE REKOMBINAN SERTA POTENSI APLIKASINYA PADA PAKAN IKAN

Siswi Fililmi Agniny, Gunanti Mahasri, Akhmad Taufiq Mukti, Muhamad Amin

Abstract


Meskipun enzim selulase rekombinan banyak dikembangkan untuk meningkatkan efisiensi pemecahan serat, informasi mengenai bagaimana modifikasi seperti mutasi dan penambahan tag SKIK (Ser-Lys-Ile-Lys) dapat memengaruhi aktivitas enzim dan produksi protein total masih terbatas. Oleh karena itu, penelitian ini bertujuan mengevaluasi pengaruh mutasi dan penambahan tag SKIK terhadap aktivitas dan protein total enzim selulase rekombinan yang diproduksi oleh Escherichia coli BL21 (DE3). Penelitian dilakukan secara eksperimental menggunakan rancangan acak lengkap (RAL) dengan empat perlakuan, yaitu P1= wild type (WT), P2 = WT + SKIK, P3 = mutan, dan P4 = mutan + SKIK, masing-masing dengan empat ulangan. Produksi enzim dilakukan melalui kultur E. coli rekombinan yang membawa plasmid pET-22b-CellE dengan induksi laktosa monohidrat, kemudian dianalisis menggunakan uji aktivitas selulase metode 3,5-dinitrosalisilat (DNS) dan pengukuran protein total dengan metode Bradford. Data dianalisis menggunakan ANOVA satu arah dan uji lanjut Duncan pada tingkat signifikansi 5% (< 0,05). Hasil penelitian menunjukkan bahwa perlakuan mutan + SKIK menghasilkan nilai tertinggi baik pada aktivitas enzim (10,66 U mL-1) maupun protein total (0,85 mg mL-1). Penambahan SKIK meningkatkan ekspresi dan kelarutan protein, sedangkan mutasi memperbaiki efisiensi katalitik enzim. Kombinasi keduanya memberikan efek sinergis dalam meningkatkan perfoma enzim selulase rekombinan. Penelitian ini merupakan yang pertama mengombinasikan penambahan tag SKIK dengan mutagenesis untuk meningkatkan ekspresi dan aktivitas katalitik enzim selulase pada E. coli. Temuan ini tidak hanya relevan untuk peningkatan produksi enzim pada industri bioteknologi, tetapi juga berpotensi diaplikasikan dalam formulasi pakan ikan. 

Although recombinant cellulase enzymes have been widely developed to enhance fiber-degradation efficiency, information regarding how modifications such as mutagenesis and the addition of the SKIK (Ser-Lys-Ile-Lys) tag influence enzymatic activity and total protein production remains limited. Therefore, this study aimed to evaluate the effects of mutagenesis and SKIK tagging on the activity and total protein yield of recombinant cellulase expressed in Escherichia coli BL21 (DE3). The research was conducted experimentally using a completely randomized design (CRD) with four treatments: P1 = wild type (WT), P2 = WT + SKIK, P3 = mutant, and P4 = mutant + SKIK, each consisting of four replications. Enzyme production was carried out using recombinant E. coli harboring the pET-22b-CellE plasmid induced with lactose monohydrate, and the resulting enzyme was analyzed for cellulase activity using the 3,5-dinitrosalicylic acid (DNS) method and total protein concentration using the Bradford assay. Data were analyzed using one-way ANOVA followed by Duncan’s post-hoc test at a 5% significance level (p < 0.05). The results showed that the mutant + SKIK treatment produced the highest values for both enzymatic activity (10.66 U mL-1) and total protein (0.85 mg mL-1). The addition of the SKIK tag enhanced protein expression and solubility, whereas mutagenesis improved catalytic efficiency. The combination of both modifications produced a synergistic effect, resulting in superior performance of the recombinant cellulase enzyme. This study is the first to combine SKIK tagging with mutagenesis to enhance the expression and catalytic activity of cellulase in E. coli. These findings are not only relevant for improving enzyme production in biotechnology industries but also hold potential applications in fish feed formulation.


Keywords


aktivitas enzim; mutasi; protein total; selulase rekombinan; SKIK; enzyme activity; mutation; recombinant cellulase; SKIK; total protein

Full Text:

PDF

References


Adebami, G. E., & Adebayo-Tayo, B. C. (2020). Development of cellulolytic strain by genetic engineering approach for enhanced cellulase production. In Genetic and metabolic engineering for improved biofuel production from lignocellulosic biomass (pp. 103–136). https://doi.org/10.1016/b978-0-12-817953-6.00008-7

Ahmad, W., Zafar, M., & Anwar, Z. (2024). Heterologous expression and characterization of mutant cellulase from indigenous strains of Aspergillus niger. PLOS ONE, 19(5), 1–24. https://doi.org/10.1101/2024.01.31.578261

Anwar, K., Sukarne, L. U., & Suryadi, M. A. F. F. (2025). Cloning and expression of Ruminococcus flavefaciens cellulase-encoding gene in E. coli as feed additive for poultry. In Proceedings of the 5th International Conference on Environmentally Sustainable Animal Industry (ICESAI 2024) (Vol. 45, p. 323). Springer Nature. https://doi.org/10.2991/978-94-6463-670-3_33

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Du, J., Zhang, X., Li, X., Zhao, J., Liu, G., Gao, B., & Qu, Y. (2018). The cellulose-binding region in Trichoderma reesei cellobiohydrolase I has a higher capacity in improving crystalline cellulose degradation than that of Penicillium oxalicum. Bioresource Technology, 266, 19–25. https://doi.org/10.1016/j.biortech.2018.06.050

Garg, R., Srivastava, R., Brahma, V., Verma, L., Karthikeyan, S., & Sahni, G. (2016). Biochemical and structural characterization of a novel halotolerant cellulase from soil metagenome. Scientific Reports, 6, 39634. https://doi.org/10.1038/srep39634

Jannathulla, R., Rajaram, V., Kalanjiam, R., Ambasankar, K., Muralidhar, M., & Dayal, J. S. (2019). Fishmeal availability in the scenarios of climate change: Inevitability of fishmeal replacement in aquafeeds and approaches for the utilization of plant protein sources. Aquaculture Research, 50(12), 3493–3506. https://doi.org/10.1111/are.14324

Jefry, J., Setiawati, M., Jusadi, D., & Fauzi, I. A. (2021). Cellulase hydrolyzed Indigofera zollingeriana leaf utilization as a feed ingredient for gourami fingerling. Jurnal Akuakultur Indonesia, 20(2), 139–147. https://doi.org/10.19027/jai.20.2.139-147

Kaur, B., Oberoi, H. S., & Chadha, B. S. (2014). Enhanced cellulase producing mutants developed from heterokaryotic Aspergillus strain. Bioresource Technology, 156, 100–107.

Kumar, N., Sudan, S. K., Garg, R., & Sahni, G. (2019). Enhanced production of novel halostable recombinant endoglucanase derived from the metagenomic library using fed-batch fermentation. Process Biochemistry, 78, 1–7. https://doi.org/10.1016/j.procbio.2018.12.033

Kunka, A., Marques, S. M., Havlasek, M., Vasina, M., Velatova, N., Cengelova, L., Kovar, D., Damborsky, J., Marek, M., Bednar, D., & Prokop, Z. (2023). Advancing enzyme stability and catalytic efficiency through synergy of force-field calculations, evolutionary analysis, and machine learning. ACS Catalysis, 13(19), 12506–12518. https://doi.org/10.1021/acscatal.3c02575

Liang, Q., Yuan, M., Xu, L., Lio, E., Zhang, F., Mou, H., & Secundo, F. (2022). Application of enzymes as a feed additive in aquaculture. Marine Life Science & Technology, 4, 208–221. https://doi.org/10.1007/s42995-022-00128-z

Magalhães, R., Díaz-Rosales, P., Diógenes, A. F., Enes, P., Oliva-Teles, A., & Peres, H. (2018). Improved digestibility of plant ingredient-based diets for European seabass (Dicentrarchus labrax) with exogenous enzyme supplementation. Aquaculture Nutrition, 24(4), 1287–1295. https://doi.org/10.1111/anu.12666

Marma, M., Chakroborty, K., Lee, J. M., Rahman, Z., & Rafiquzzaman, M. (2025). Characterization and enzymatic assay of cellulase-producing probiotic bacteria isolated from traditional fermented bamboo of Bangladesh. Hayati: Journal of Biosciences, 32(2), 547–560. https://doi.org/10.4308/hjb.32.2.547-560

Mondal, S., Halder, S. K., & Mondal, K. C. (2022). Tailoring in fungi for next-generation cellulase production with special reference to CRISPR/Cas system. Systems Microbiology and Biomanufacturing, 2(1), 113–129. https://doi.org/10.1007/s43393-021-00045-9

Murtiyaningsih, H., & Hazmi, M. (2017). Isolasi dan uji aktivitas enzim selulase pada bakteri selulolitik asal tanah sampah. Agritop, 15(2), 293–308.

Nababan, M., Gunam, I. B. W., & Wijaya, I. M. M. (2019). Produksi enzim selulase kasar dari bakteri selulolitik. Jurnal Rekayasa dan Manajemen Agroindustri, 7(2), 2503–488X. https://doi.org/10.24843/jrma.2019.v07.i02.p03

Ojima-Kato, T., Nagai, S., & Nakano, H. (2017). N-terminal SKIK peptide tag markedly improves expression of difficult-to-express proteins in Escherichia coli and Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 123(5), 540–546. https://doi.org/10.1016/j.jbiosc.2016.12.004

Ojima-Kato, T., Nishikawa, Y., Furukawa, Y., Kojima, T., & Nakano, H. (2023). Nascent MSKIK peptide cancels ribosomal stalling by arrest peptides in Escherichia coli. Journal of Biological Chemistry, 299(5), 104676. https://doi.org/10.1016/j.jbc.2023.104676

Ojima-Kato, T. (2025). Advances in recombinant protein production in microorganisms and functional peptide tags. Bioscience, Biotechnology, and Biochemistry, 89(1), 1–10. https://doi.org/10.1093/bbb/zbae147

Pan, Z., Cunningham, D. S., Zhu, T., Ye, K., Koepsel, R. R., Domach, M. M., & Ataai, M. M. (2010). Enhanced recombinant protein production in pyruvate kinase mutant of Bacillus subtilis. Applied Microbiology and Biotechnology, 85(6), 1769–1778.

Ramadhan, B., & Wikandari, P. R. (2021). Review artikel: Aktivitas enzim amilase dari bakteri asam laktat (karakteristik dan aplikasi). UNESA Journal of Chemistry, 10(2), 109–120. https://doi.org/10.26740/ujc.v10n2.p109-120

Ravindran, R., & Jaiswal, A. K. (2016). Microbial enzyme production using lignocellulosic food industry wastes as feedstock: A review. Bioengineering, 3(4), 30. https://doi.org/10.3390/bioengineering3040030

Sadhu, S., Ghosh, P. K., Aditya, G., & Maiti, T. K. (2014). Optimization and strain improvement by mutation for enhanced cellulase production by Bacillus sp. (MTCC10046) isolated from cow dung. Journal of King Saud University–Science, 26, 323–332.

Singh, A., Patel, A. K., Adsul, M., Mathur, A., & Singhania, R. R. (2017). Genetic modification: A tool for enhancing cellulase secretion. Biofuel Research Journal, 14, 600–610. https://doi.org/10.18331/brj2017.4.2.5

Sivakumar, N., Zadjali, A. A., Bahry, S. A., Elshafie, A., & Eltayeb, E. A. (2016). Isolation and characterization of cellulolytic Bacillus licheniformis from compost. African Journal of Biotechnology, 15(43), 2434–2446. https://doi.org/10.5897/AJB2016.15641

Steel, R. G. D., & Torrie, J. H. (1993). Prinsip dan prosedur statistika: Suatu pendekatan biometrik (B. Sumantri, Trans.). Gramedia Utama.

Sumida, K. H., Núñez-Franco, R., Kalvet, I., Pellock, S. J., Wicky, B. I., Milles, L. F., Dauparas, J., Wang, J., Kipnis, Y., Jameson, N., Kang, A., De La Cruz, J., Sankaran, B., Bera, A. K., Jimenez-Oses, G., & Baker, D. (2024). Improving protein expression, stability, and function with ProteinMPNN. Journal of the American Chemical Society, 146(3), 2054–2061. https://doi.org/10.1021/jacs.3c10941

Sun, Y., Zhao, X., Liu, H., & Yang, Z. (2019). Effect of fiber content in practical diet on feed utilization and antioxidant capacity of loach (Misgurnus anguillicaudatus). Journal of Aquaculture Research & Development, 10(12), 577.

Sya’bani, N., Astuti, W., & Pratiwi, D. R. (2017). Isolasi dan karakterisasi lipase dari kecambah biji alpukat (Persea americana Mill.). Jurnal Atomi, 2(2), 209–212.

Tran, D. M., Nguyen, T. H., Huynh, T. U., & Pentekhina, I. (2025). Recombinant expression and characterization of the family 5 cellulase from Bacillus velezensis in Escherichia coli BL21-CodonPlus (DE3)-RIPL. Biochemistry and Biophysics Reports, 41, 101898. https://doi.org/10.1016/j.bbrep.2024.101898

Yoshino, A., Shimoji, R., Nishikawa, Y., Nakano, H., & Kato, T. O. (2025). Analysis and application of translation-enhancing peptides for improved production of proteins containing polyproline. SynBio, 3(4), 14. https://doi.org/10.3390/synbio3040014




DOI: http://dx.doi.org/10.15578/jra.20.3.2025.257-267


Lisensi Creative Commons
Jurnal Riset Akuakultur is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats
p-ISSN 1907-6754
e-ISSN 2502-6534