STATISTICAL AND MACHINE-LEARNING APPROACHES FOR MAPPING BIGEYE TUNA FISHING OPTIMALITY IN THE BANDA SEA
Abstract
Given the complexity of the Banda Sea, which has rapidly changing environmental factors, studies are needed to determine the optimal location for important fishing, such as bigeye tuna (BET). To map optimal fishing locations, statistical and machine-learning methods are used through an understanding of the dynamics of chlorophyll-a (Chlo) concentrations and sea surface temperature (SST) and fish catch data as key factors. Using the fishing logbook and oceanographic data from 2014 to 2022, this study applies the methods of generalized Additive Model (GAM) and Empirical Cumulative Distribution Function (ECDF) to analyze the effect of Chlo and SSTs on Catch per Unit Efforts (CPUEs). Due to GAM's suboptimal performance, ECDF is chosen as the primary method. Determining the optimal value range using k-means and the elbow method showed an optimal Chlo range of 0.087–0.30 mg/m³ and SST of 29.46–30.45°C. The analysis showed the best catching conditions from January to March. These findings support sustainable fishing by providing a monthly map of optimal fishing zones, helping fishers adapt to dynamic conditions. Further research is suggested to integrate real-time data and advanced techniques to improve location accuracy.
Keywords
Full Text:
PDFReferences
Abu, M., Mullah, S., Hossain, Z., Benedetti, A., & Materials, S. (2023). Comparing Estimation Approaches for Generalized Additive Mixed Models with Binary Outcomes. Journal of Statistical Computation and Simulation , 93(18), 3362–3381. https://doi.org/https://doi.org/10.1080/00949655.2023.2222864
Alfianto, N., Suherman, A., Suryanti, S., & Hernuryadin, Y. (2023). Strategy for Implementation of Seaworthiness of Large Pelagic Purse Seine at Nizam Zachman Ocean Fishing Port. Sustainability (Switzerland), 15(18). https://doi.org/10.3390/su151813713
Antonio May-Kú, M., Ornelas-Roa, M., & Suárez-Morales, E. (2022). Surface copepod assemblages in shallow coastal waters off northeastern Yucatan Peninsula influenced by the Yucatan upwelling. Regional Studies in Marine Science, 56(102718). https://doi.org/https://doi.org/10.1016/j.rsma.2022.102718
Arashi, M., Roozbeh, M., Hamzah, N. A., & Gasparini, M. (2021). Ridge regression and its applications in genetic studies. PLoS ONE, 16(4 April). https://doi.org/10.1371/journal.pone.0245376
Artetxe-Arrate, I., Fraile, I., Marsac, F., Farley, J. H., Rodriguez-Ezpeleta, N., Davies, C. R., Clear, N. P., Grewe, P., & Murua, H. (2021). A review of the fisheries, life history and stock structure of tropical tuna (skipjack Katsuwonus pelamis, yellowfin Thunnus albacares and bigeye Thunnus obesus) in the Indian Ocean. In Advances in Marine Biology (Vol. 88, pp. 39–89). Academic Press. https://doi.org/10.1016/bs.amb.2020.09.002
Aryal, A., Acharya, A., & Kalra, A. (2022). Assessing the Implication of Climate Change to Forecast Future Flood Using CMIP6 Climate Projections and HEC-RAS Modeling. Forecasting, 4(3), 582–603. https://doi.org/10.3390/forecast4030032
Asuhadi, S., Zainuddin, M., Safruddin, & Musbir, M. (2024). Optimizing chlo and sst for skipjack tuna fisheries in the banda sea and its surroundings using GAM and ECDF. In BIO Web of Conferences, 136, 04004. The 13th International and National Seminar of Fisheries and Marine Science (ISFM XIII 2024). https://doi.org/10.1051/bioconf/202413604004
Bhatta, K. P., Robson, B. A., Suwal, M. K., & Vetaas, O. R. (2021). A pan-Himalayan test of predictions on plant species richness based on primary production and water-energy dynamics. Frontiers of Biogeography, 13(3), 1–18. https://doi.org/10.21425/F5FBG49459
Bourenane, D., Sad Houari, N., & Taghezout, N. (2023). Agent-based Approach for the Recommendation and Unsupervised Classification of Enterprise Services in the Cloud. International Journal of Computing and Digital Systems, 14(1), 387–401. https://doi.org/10.12785/ijcds/140130
Brancucci Martínez-Anido, C., Bolado, R., De Vries, L., Fulli, G., Vandenbergh, M., & Masera, M. (2012). European power grid reliability indicators, what do they really tell? Electric Power Systems Research, 90, 79–84. https://doi.org/https://doi.org/10.1016/j.epsr.2012.04.007
Brandt, D. A., Vega, E. F., & Ridley, A. J. (2024). On Generalized Additive Models for Representation of Solar EUV Irradiance. Space Weather, 22(3). https://doi.org/10.1029/2023SW003680
Chang, C. H., Tan, S., Lengerich, B., Goldenberg, A., & Caruana, R. (2021). How Interpretable and Trustworthy are GAMs? Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 95–105. https://doi.org/10.1145/3447548.3467453
Clewley, R. H., Guckenheimer, J. M., & Valero-Cuevas, F. J. (2008). Estimating effective degrees of freedom in motor systems. IEEE Transactions on Biomedical Engineering, 55(2), 430–442. https://doi.org/10.1109/TBME.2007.903712
Cornic, M., & Rooker, J. R. (2021). Temporal shifts in the abundance and preferred habitats of yellowfin and bigeye tuna larvae in the Gulf of Mexico. Journal of Marine Systems, 217(103524). https://doi.org/https://doi.org/10.1016/j.jmarsys.2021.103524
Danino, Y. M., Rabinovitz, R., Kirshenboim, I., Palzur, E., Pick, C. G., Ish-Shalom, I., Golovkin, Y., & Arieli, Y. (2024). Exposure to hyperbaric O2 levels leads to blood-brain barrier breakdown in rodents. Fluids and Barriers of the CNS, 21(1). https://doi.org/10.1186/s12987-024-00543-7
Dimitrova, D. S., Kaishev, V. K., & Tan, S. (2020). Computing the kolmogorov-smirnov distribution when the underlying cdf is purely discrete, mixed, or continuous. Journal of Statistical Software, 95, 1–42. https://doi.org/10.18637/jss.v095.i10
Fachruddin Syah, A., Lumban Gaol, J., Zainuddin, M., Apriliya, N. R., Berlianty, D., & Mahabror, D. (2019). Habitat Model Development of Bigeye tuna (Thunnus obesus) during Southeast Monsoon in the Eastern Indian Ocean using Satellite Remotely Sensed Data. IOP Conference Series: Earth and Environmental Science, 276(1). https://doi.org/10.1088/1755-1315/276/1/012011
Friedland, D. , Morse, E. , Shackell, N. , Tam, C. , Morano, L. , Moisan, R. , & Brady, C. (2020). Changing Physical Conditions and Lower and Upper Trophic Level Responses on the US Northeast Shelf. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.567445
Ginting, T. A., Barus, T. A., & Wahyuningsih, H. (2023). Phytoplankton abundance and trophic status of Belawan Waters, North Sumatra. IOP Conference Series: Earth and Environmental Science, 1241(1). https://doi.org/10.1088/1755-1315/1241/1/012122
Guillotreau, P., Salladarré, F., Capello, M., Dupaix, A., Floc’h, L., Tidd, A., Tolotti, M., & Dagorn, L. (2024). Is FAD fishing an economic trap? Effects of seasonal closures and other management measures on a purse-seine tuna fleet. Fish and Fisheries, 25(1), 151–167. https://doi.org/10.1111/faf.12799
Hacıefendioğlu, K. , Adanur, S. , & Demir, G. (2024). Automatic Landslide Segmentation Using a Combination of Grad-CAM Visualization and K-Means Clustering Techniques. Iran J Sci Technol Trans Civ Eng, 48, 943–959. https://doi.org/https://doi.org/10.1007/s40996-023-01193-9
Hargiyatno, I. T., Anggawangsa, R. F., Natsir, M., Sedana, I. G. B., Widodo, A. A., & Wudianto. (2021). Comparison of handline tuna catches in Indian Ocean and Banda Sea waters. E3S Web of Conferences, 322. https://doi.org/10.1051/e3sconf/202132203004
Hernanda, M., Salma, A., Vionanda, D., & Martha, Z. (2023). Application of the Self-Organizing Maps Method in Clustering Based on Indicators of Need for Social Welfare Services in West Java Province. UNP Journal of Statistics and Data Science, 1(4), 329–336. https://doi.org/10.24036/ujsds/vol1-iss4/82
Hu, M., Li, M., & Kong, L. (2024). Trustworthy regularized huber regression for outlier detection. Journal of Statistical Computation and Simulation, 94(5), 1121–1137. https://doi.org/10.1080/00949655.2023.2281643
Kizenga, H. J., Jebri, F., Shaghude, Y., Raitsos, D. E., Srokosz, M., Jacobs, Z. L., Nencioli, F., Shalli, M., Kyewalyanga, M. S., & Popova, E. (2021). Variability of mackerel fish catch and remotely-sensed biophysical controls in the eastern Pemba Channel. Ocean and Coastal Management, 207. https://doi.org/10.1016/j.ocecoaman.2021.105593
Kumar Rajahmundry, G., Garlapati, C., Senthil Kumar, P., Surya Alwi, R., & Vo, D.-V. N. (2021). Statistical analysis of adsorption isotherm models and its appropriate selection. Chemosphere, 276(130176). https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.130176
Li, G., Zhao, L., Tang, W., Wu, L., & Ren, J. (2023). Physica A: Statistical Mechanics and its Applications Modeling and analysis of mandatory lane-changing behavior considering heterogeneity in means and variances. Physica A: Statistical Mechanics and Its Applications, 625(128825). https://doi.org/https://doi.org/10.1016/j.physa.2023.128825
Li, X., Marcus, D., Russell, J., Aboagye, E. O., Ellis, L. B., Sheeka, A., Park, W. H. E., Bharwani, N., Ghaem-Maghami, S., & Rockall, A. G. (2024). Weibull parametric model for survival analysis in women with endometrial cancer using clinical and T2-weighted MRI radiomic features. BMC Medical Research Methodology, 24(1). https://doi.org/10.1186/s12874-024-02234-1
Li, Z., Zhao, Y., Hu, X., Botta, N., Ionescu, C., & Chen, G. H. (2023). ECOD: Unsupervised Outlier Detection Using Empirical Cumulative Distribution Functions. IEEE Transactions on Knowledge and Data Engineering, 35(12), 12181–12193. https://doi.org/10.1109/TKDE.2022.3159580
Lin, H., Wang, J., Zhu, J., & Chen, X. (2023). Evaluating the impacts of environmental and fishery variability on the distribution of bigeye tuna in the Pacific Ocean. ICES Journal of Marine Science, 80(10), 2642–2656. https://doi.org/10.1093/icesjms/fsad163
Lv, M., Gao, X., Liu, Y., Ju, W., Sun, B., Li, W., & Zhou, X. (2022). The impact of using different probability representations in application of equidistant quantile matching for bias adjustment of daily precipitation over the Daqing River Basin, North China. International Journal of Climatology, 42(2), 777–796. https://doi.org/10.1002/joc.7272
Maddumage, U. S., Rajapaksha, J., & Gunatilake, J. (2023). Effect of ocean circulation and chlorophyll-a concentration on yellowfin tuna catch rates in Sri Lankan logline fishery. Ceylon Journal of Science, 52(3), 371–379. https://doi.org/10.4038/cjs.v52i3.8208
Majumdar, C., Lopez-Benitez, M., & Merchant, S. N. (2019, February 25). Experimental Evaluation of the Poissoness of Real Sensor Data Traffic in the Internet of Things. 2019 16th IEEE Annual Consumer Communications and Networking Conference, CCNC 2019. https://doi.org/10.1109/CCNC.2019.8651702
Molaei, M., Mohammadzadeh, A., Ghasemi, A., & Badiee, M. (2024). Effect of dry and wet finishing and polishing on color change and opacity of nanofill and nanohybrid composites. BMC Oral Health, 24(1). https://doi.org/10.1186/s12903-024-03944-0
Morsy, M., Taghizadeh-Mehrjardi, R., Michaelides, S., Scholten, T., Dietrich, P., & Schmidt, K. (2021). Optimization of rain gauge networks for arid regions based on remote sensing data. Remote Sensing, 13(21). https://doi.org/10.3390/rs13214243
Mundo, A. I., Muldoon, T. J., & Tipton, J. R. (2022). Generalized additive models to analyze non-linear trends in biomedical longitudinal data using R: Beyond repeated measures ANOVA and Linear Mixed Models. BioRxiv, 1–31. https://doi.org/10.1101/2021.06.10.447970
Nagy, A. J., Freeman, M. C., Irwin, B. J., & Wenger, S. J. (2024). Life-history connections to long-term fish population trends in a species-rich temperate river. Ecology of Freshwater Fish, 33(2). https://doi.org/10.1111/eff.12767
Nistane, V. (2024). Optimum prediction model of remaining useful life for rolling element bearing based on integrating optimize health indicator (OHI) and machine learning algorithm. World Journal of Engineering, 21(1), 170–185. https://doi.org/10.1108/WJE-06-2022-0244
Noguchi, K., Konietschke, F., Marmolejo-Ramos, F., & Pauly, M. (2021). Permutation tests are robust and powerful at 0.5% and 5% significance levels. Behavior Research Methods, 53(6), 2712–2724. https://doi.org/10.3758/s13428-021-01595-5
Ovando, D., Libecap, G. D., Millage, K. D., & Thomas, L. (2021). Coasean approaches to address overfishing: Bigeye tuna conservation in the western and central pacific ocean. Marine Resource Economics, 36(1), 91–109. https://doi.org/10.1086/711853
Pant, M., Bhatla, R., Ghosh, S., Das, S., & Mall, R. K. (2023). Will Warming Climate Affect the Characteristics of Summer Monsoon Rainfall and Associated Extremes Over the Gangetic Plains in India? Earth and Space Science, 10(2). https://doi.org/10.1029/2022EA002741
Pedersen, E. J., Miller, D. L., Simpson, G. L., & Ross, N. (2019). Hierarchical generalized additive models in ecology: An introduction with mgcv. PeerJ, 2019(5). https://doi.org/10.7717/peerj.6876
Peng Lian, & Le Gao. (2024). Impacts of central-Pacific El Niño and Physical Drivers on Eastern Pacific Bigeye Tuna. Journal of Oceanology and Limnology. https://doi.org/https://doi.org/10.1007/s00343-023-3051-3
Pimentel-Acosta, C. A., Caña-Bozada, V. H., Osuna-Cabanillas, J. M., Fajer-Ávila, E. J., Ovando-Vásquez, C., & Morales-Serna, F. N. (2023). Population and Transcriptomic Changes of the Tropical Fish Parasite Caligus confusus (Copepoda: Caligidae) with Seasonal Variations in Sea Temperature. Fishes, 8(10). https://doi.org/10.3390/fishes8100475
Punt, A. E., Castillo-Jordán, C., Hamel, O. S., Cope, J. M., Maunder, M. N., & Ianelli, J. N. (2021). Consequences of error in natural mortality and its estimation in stock assessment models. Fisheries Research, 233(105759). https://doi.org/https://doi.org/10.1016/j.fishres.2020.105759
Reda Abonazel, M. (2020). Handling Outliers and Missing Data in Regression Models Using R: Simulation Examples. Academic Journal of Applied Mathematical Sciences, 68, 187–203. https://doi.org/10.32861/ajams.68.187.203
Sean Bailey. (2023, January 1). NASA Ocean Color. https://oceancolor.gsfc.nasa.gov/l3/
Setiawati, M. D., Sambah, A. B., Miura, F., & Tanaka, T. (2015). Characterization of bigeye tuna habitat in the Southern Waters off Java-Bali using remote sensing data. Advances in Space Research, 55(2), 732–746. https://doi.org/https://doi.org/10.1016/j.asr.2014.10.007
Smith, R. J. (2020). P >.05: The incorrect interpretation of “not significant” results is a significant problem. In American Journal of Physical Anthropology (Vol. 172, Issue 4, pp. 521–527). Wiley-Liss Inc. https://doi.org/10.1002/ajpa.24092
Soares, R., & Castro, W. (2020). Application of Tukey’s Test for Statistical Measurement of Percentage Indexes Derived from the Difference Between Predicted Crystallographic Data in Five Nitihf Alloys Obtained by Two Processes. International Journal of Engineering Research & Technology (IJERT), 9(03), 45–53. https://doi.org/https://doi.org/10.17577/IJERTV9IS030118.
Susko, E., & Roger, A. J. (2020). On the Use of Information Criteria for Model Selection in Phylogenetics. Molecular Biology and Evolution, 37(2), 549–562. https://doi.org/10.1093/molbev/msz228
Syamsuddin, M. L., Saitoh, S. I., Hirawake, T., Samsul, B., & Harto, A. B. (2013). Effects of El Niño-Southern Oscillation events on catches of Bigeye Tuna (Thunnus obesus) in the eastern Indian Ocean off Java. Fishery Bulletin, 111(2), 175–188. https://doi.org/10.7755/FB.111.2.5
Tabachnick, B. G., & Fidell, L. S. (2007). Experimental designs using ANOVA. Thomson/Brooks/Cole.
Wang, L., Abdel-Aty, M., Lee, J., & Shi, Q. (2019). Analysis of real-time crash risk for expressway ramps using traffic, geometric, trip generation, and socio-demographic predictors. Accident Analysis & Prevention, 122, 378–384. https://doi.org/https://doi.org/10.1016/j.aap.2017.06.003
Wood, S. N. (2020). Inference and computation with generalized additive models and their extensions. Test, 29(2), 307–339. https://doi.org/10.1007/s11749-020-00711-5
Wu, Z., & Abdul-Nour, G. (2020). Comparison of Multi-Criteria Group Decision-Making Methods for Urban Sewer Network Plan Selection. CivilEng, 1(1). https://doi.org/10.3390/civileng1010003
Yang, J., Rahardja, S., & Fränti, P. (2019, December 19). Outlier detection: How to threshold outlier scores? ACM International Conference Proceeding Series. https://doi.org/10.1145/3371425.3371427
Yati, E., Sadiyah, L., Satria, F., Alabia, I. D., Sulma, S., Prayogo, T., Marpaung, S., Harsa, H., Kushardono, D., Lumban-Gaol, J., Budiarto, A., Efendi, S., & Patmiarsih, S. (2024). Spatial distribution models for the four commercial tuna in the sea of maritime continent using multi-sensor remote sensing and maximum entropy. Marine Environmental Research, 198(106540). https://doi.org/https://doi.org/10.1016/j.marenvres.2024.106540
Zaghwan, A., & Gunawan, I. (2021). Energy loss impact in electrical smart grid systems in australia. Sustainability (Switzerland), 13(13). https://doi.org/10.3390/su13137221
Zendrato, N., Dhany, H. W., Siagian, N. A., & Izhari, F. (2020). Bigdata Clustering using X-means method with Euclidean Distance. Journal of Physics: Conference Series, 1566(1). https://doi.org/10.1088/1742-6596/1566/1/012103
Zhao, Y. C., Sun, Z. H., Xiao, M. X., Li, J. K., Liu, H. yuan, Cai, H. L., Cao, W., Feng, Y., Zhang, B. K., & Yan, M. (2024). Analyzing the correlation between quinolone-resistant Escherichia coli resistance rates and climate factors: A comprehensive analysis across 31 Chinese provinces. Environmental Research, 245. https://doi.org/10.1016/j.envres.2023.117995
Zhu, M. X., & Shao, Y. H. (2023). Classification by Estimating the Cumulative Distribution Function for Small Data. IEEE Access, 11, 41142–41157. https://doi.org/10.1109/ACCESS.2023.3269504.
DOI: http://dx.doi.org/10.15578/marlin.V6.I2.2025.131-150
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats
P-ISSN: 2716-120X
E-ISSN: 2715-9639