EVALUATION OF RESISTANCE AND GENE EXPRESSION OF BARRAMUNDI, Lates calcarifer POST-INFECTION OF NERVOUS NECROSIS VIRUS

Fitriyah Husnul Khotimah, Alimuddin Alimuddin, Dinar Tri Soelistyowati, Sri Nuryati, Ketut Sugama, Ahmad Muzaki, Indah Mastuti, Sari Budi Moria Sembiring, Ketut Mahardika, Harton Arfah, Haryanti Haryanti

Abstract


The most common problem in barramundi Lates calcarifer seedling production is the high mortality (> 90%) caused by nervous necrosis virus (NNV) infection. This research aims to evaluate the resistance and gene expression of barramundi challenged by NNV. Two populations were used in this study, i.e., Australian, and Situbondo-originated barramundi populations. The immune-related gene expression levels in the liver, head of kidney, and spleen were observed at 48 and 96 hours after post-infection (hpi). Barramundi’s survival and blood parameters were evaluated post-NNV infection. The results showed that the highest survival was revealed in Situbondo’s barramundi (42.0±4.47%) compared to Australian barramundi (20.0±7.07%) and no mortality was observed in the control without NNV infection. The higher survival rate in barramundi from Situbondo was in line with the blood profile. The number of red blood cell from Situbondo barramundi post-NNV infection (ST) at 96 hpi was higher (P<0.05) than Australian barramundi post-NNV infection (AT). The number of white blood cell of ST at 48 hpi was higher (P<0.05) than AT, but started to decrease at 96 hpi in ST barramundi. The total white blood cell in AT barramundi increased from 48 to 192 hpi. TNFα and IL1-β gene expression levels were significantly higher in the liver, head kidney, and spleen of Situbondo compared to Australian barramundi at 48 hpi, while MHCIIα gene expression in Situbondo’s was significantly higher compared to Australian barramundi at 96 hpi. These results indicate the important roles of all the genes in the barramundi’s immune responses against viral infection. Based on the results of the research, Situbondo’s barramundi has the potential to be used as a candidate for generating broodstock of disease-resistant strain.


Keywords


barramundi; viral infection; fish mortality; blood parameter; gene expression

Full Text:

PDF

References


Abdullah, A., Ramli, R., Ridzuan, MSM., Murni, M., Hashim, S., Sudirwan, F., Abdullah, SZ., Mansor, NN., Amira, S., Saad, MZ., & Amal MNA. (2017). The presence of vibrionaceae, betanodavirus and iridovirus in marine cage cultured fish: Role of fish size, water physicochemical parameters, and relationships among the pathogens. Aquaculture Reports, 7, 57-65. https://doi.org/10.1016/j.aqrep.2017.06.001

Angosto, D., López-Castejón, G., López-Muñoz, A., Sepulcre, MP., Arizcun, M., Meseguer, J., & Mulero, V. (2012). Evolution of inflammasome functions in vertebrates: Inflammasome and caspase-1 trigger fish macrophage cell death but are dispensable for the processing of IL-1β. Innate Immun, 18, 815–824. https://doi.org/10.1177/1753425912441956

Bailone, RL., Martins, ML., Mouriño, JLP., Vieira, FN., Pedrotti, FS., Nunes, GC., & Silva, BC. (2010). Hematology and agglutination titer after polyvalent immunization and subsequent challenge with Aeromonas hydrophila in Nile tilapia Oreochromis niloticus. Arch Med Vet, 42, 221-227. https://dx.doi.org/10.4067/S0301-732X2010000300015

Chiang, Y., Wu, Y., & Chi, S. (2017). Interleukin-1b secreted from betanodavirus-infected microglia caused the death of neurons in giant grouper brains. Development and Comparative Immunology, 70, 19-26. Doi: 10.1016/j.dci.2017.01.002

Daneshvar, E., Ardestani, MY., Dorafshan, S., & Martins, MC. (2012). Hematological parameters of Iranian cichlid Iranocichla hormuzensis Coad 1982, Perciformes in Mehran River. An Acad Bras Cienc, 84(4), 943-949. DOI: 10.1590/s0001-37652012005000054

Domingos, JA., Smith-Keune, C., Robinson, N., Loughnan, S., Harrison, P., & Jerry, DR. (2013). Heritability of harvest growth traits and genotype environment interactions in barramundi, Lates calcarifer (Bloch). Aquaculture, 402, 66-75. https://doi.org/10.1016/j.aquaculture.2013.03.029

Elbahnaswya, S., & Elshopakey, G. (2020). Differential gene expression and immune response of Nile tilapia (Oreochromis niloticus) challenged intraperitoneally with Photobacterium damselae and Aeromonas hydrophila demonstrating immunosuppression. Aquaculture, 526, 735364 https://doi.org/10.1016/j.aquaculture. 2020.735364

Fu, GH., Bai, ZY., Xia, JH., Liu, F., Liu, P., & Yue, GH. (2013). Analysis of two lysozyme genes and antimicrobial function of their recombinant protein in Asian seabass. Plos One, 8(11), 1-12. https://doi.org/10.1371/journal.pone.0079743

Geay, F., Ferraresso, S., Zambonino-Infante, JL., Bargelloni, L., Quentel, C., Vandeputte, M., Kaushik, S., Cahu, C., & Mazurais D. (2011). Effects of the total replacement of fish-based diet with plant-based diet on the hepatic transcriptome of two European sea bass (Dicentrarchus labrax) half-sibfamilies showing different growth rates with the plant-based diet. BMC Genomics,12,1-18. DOI: 10.1186/1471-2164-12-522

Jerry DR. (2014). Biology and culture of Asian Seabass (p 1-314). CRC Press.

Johnny, F., Zafran, Roza, D., & Mahardika, K. (2003). Hematology of some aquacultured marine fish species. Jurnal Penelitian Perikanan lndonesia. 9(4): 63-71. http://dx.doi.org/10.15578/jppi.9.4.2003.63-71.

Koesharyani, I., & Novita, H. (2006). Nested reverse transcriptase polymerase chain reaction (Nested RT-PCR) of viral nervous necrosis in humpback grouper, Cromileptes altivelis. Jurnal Riset Akuakultur, 1(3), 381-386.

Liu, P., Wang, L., Kwang, J., Yue, GH., & Wong, S-M. (2016). Transcriptome analysis of genes responding to NNV infection in Asian seabass epithelial cells. Fish Shellfish Immunol, 54, 342–352. https://doi.org/10.1016/j.fsi.2016.04.029

Livak KJ, & Schmittgen TD. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4), 402–408. DOI: 10.1006/meth.2001.1262

MacKenzie, S., Joan C Balasch, JC., Novoa, B., Ribas, L., Roher, N., Krasnov, A., & Figueras, A. (2008). Comparative analysis of the acute response of the trout, O. mykiss, head kidney to in vivo challenge with virulent and attenuated infectious hematopoietic necrosis virus and LPS-induced inflammation. BMC Genomics, 9, 141 DOI: 10.1186/1471-2164-9-141

Mahardika, K., Mastuti, I., Roza, D., Syahidah, D., Astuti, WW., Ismi, S., & Zafran. (2020). Monitoring the incidence of marine fish diseases in hatcheries and floating net cages in North Bali coastal water. Jurnal Riset Akuakultur, 15(2), 89-102. http://dx.doi.org/10.15578/jra.15.2.2020.89-102.

Mohd-Shaharuddin, N., Mohd-Adnan, A., Kua, B., & Nathan, S. (2013). Expression profile of immune-related gene in Lates calcarifer infected by Cryptocaryon irritans. Fish Shellfish Immunol, 34, 762-769. DOI: 10.1016/j.fsi.2012.11.052

Munday, BL., Kwang, J., & Moody, N. (2002). Betanodavirus infections of teleost fish: a review. Journal of fish Diseases, 25(3), 127-142. DOI:10.1046/j.1365-2761.2002.00350.x

Novriadi, R., Agustatik, S., & Dwi, TON. (2015). Identification of the presence of viral nervous necrosis and iridovirus in marine fish culture in the working area of the Batam Marine Aquaculture Center. Omni-Akuatika, 14(20), 54-62.

Poisa-Beiro, L., Dios, S., Montes, A., Aranguren, R., Figueras, A., & Novoa, B. (2008). Nodavirus increases the expression of MX and inflammatory cytokines in fish brains. Molecular Immunology, 45, 218-225. https://doi.org/10.1016/j.molimm.2007.04.016

Santos, AA., Ranzani-Paiva, MJT., Veiga, ML., Faustino, L., & Egami, MI. (2012). Hematological parameters and phagocytic activity in fat snook Centropomus parallelus bred in captivity. Fish Shellfish Immunol, 33, 953–961. DOI: 10.1016/j.fsi.2012.08.005

Sayed, AEH., & Moneeb, RH. (2015). Hematological and biochemical characters of monosex tilapia Oreochromis niloticus Linnaeus 1758 cultivated using methyltestosterone. J Basic Applied Zool, 72, 36–42. https://doi.org/10.1016/j.jobaz.2015.03.002

Sembiring, SBM., Wibawa, GS., Mahardika, K., Widyastuti, Z., & Haryanti. (2018). Infection prevalence of viral nervous necrosis (VNN) and iridovirus in hatcheries and mariculture. Media Akuakultur, 13(1), 1-9. http://dx.doi.org/10.15578/ma.13.2.2018.83-90.

Sharma, SRK., Pradeep, MS., Dube, PN., Kumar, TVA., Kumar, R., & Swaminathan, TR. (2019). Betanodavirus-associated mortality in Asian seabass (Lates calcarifer, Bloch) cultured in indoor tanks and sea cages. Aquaculture International, 27, 279-289. DOI:10.1007/s10499-018-0322-7

Shetty, M., Maiti, B., Santhosh, KS., Venugopal, MN., & Karunasagar, I. (2012). Betanodavirus of marine and freshwater fish: distribution, genomic organization, diagnosis and control measures. Indian J Virol, 23, 114–123. DOI: 10.1007/s13337-012-0088-x

Sudaryatma, PE., Lestari, AT., Sunarsih, NL., Widiarti, KS., Hidayah, SN., & Srinoto, D. (2012). Immunocytochemistry streptavidin-biotin: early detection of viral nervous necrosis in the mucous of the tiger grouper (Epinephelus fuscoguttatus). Jurnal Sain Veteriner, 30, 99–109.

Suprapto, R., Alimuddin, Nuryati, S., Imron, Marnis, H., & Iswanto, B. (2017). MHC-II Marker potential linked to motile aeromonad septicaemia disease resistance in African catfish (Clarias gariepinus). Indonesian Aquaculture Journal, 12(1), 21-28. http://dx.doi.org/10.15578/iaj.12.1.2017.21-28.

Toffan, A., Pascoli, F., Pretto, T., Panzarin, V., Abbadi, M., Buratin, A., Quartesan, R., Gijon, D., & Padros, F. (2017). Viral nervous necrosis in gilthead sea bream (Sparus aurata) caused by reassortant betanodavirus RGNNV/SJNNV: an emerging threat for Mediterranean aquaculture. Scientific Report, 7, 46755 :1-12. DOI: 10.1038/srep46755

Wang, L., Tian, Y., Cheng, M., Li, Z., Li, S., Wu, Y., Zhang, J., Ma, W., Li, W., & Pang, Z. (2019). Transcriptome comparative analysis of immune tissues from asymptomatic and diseased Epinephelus moara naturally infected with nervous necrosis virus. Fish Shellfish Immunol, 93, 99–107. DOI : 10.1016/j.fsi.2019.07.020

Wu, Y., Kai, Y., & Chi, S. (2013). Persistently betanodavirus-infected barramundi (Lates calcarifer) exhibit resistances to red sea bream iridovirus infection. Developmental and Comparative Immunology, 41, 666–674. https://doi.org/10.1016/j.dci.2013.06.011

Xu, H., Shao, XL., Zhang, Z., Zou, YM., Wu, XY., & Yang, LQ. (2013). Oxidative stress and immune-related gene expression following exposure to di-n-butyl phthalate and diethyl phthalate in zebrafish embryos. Ecotoxology Environmental Safety, 93, 39-44. doi: 10.1016/j.ecoenv.2013.03.038

Yang, Z., Yue, GH., & Wong, SM. (2022). VNN disease and status of breeding for resistance to NNV in aquaculture. Aquaculture and Fisheries, 7, 147-157. https://doi.org/10.1016/j.aaf.2021.04.001

Ye, B., Wan, Z., Wang, L., Pang, H., Wen, Y., Liu, H., Liang, B., Lim, HS, Jiang, J., & Yue, G. (2017). Heritability of growth traits in the Asian seabass (Lates calcarifer). Aquaculture and Fisheries, 2, 112-118. https://doi.org/10.1016/j.aaf.2017.06.001




DOI: http://dx.doi.org/10.15578/iaj.17.2.2022.97-106

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Creative Commons License
Indonesian Aquaculture Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats
p-ISSN: 0215-0883
e-ISSN: 2502-6577

 

Hasil gambar untuk isjd