EFFECTS OF DIFFERENT SALINITY LEVELS ON GROWTH AND PHYSIOLOGICAL RESPONSE OF Tor soro JUVENILE

Ananda Ghifari Leying, Vitas Atmadi Prakoso, Otong Zenal Arifin, Jojo Subagja, Kurniawan Kurniawan, Deni Irawan, Wahyulia Cahyanti, Fera Permata Putri, Ofan Bosman, Arif Wibowo, Anang Hari Kristanto, Taufik Budhi Pramono

Abstract


Tor soro is one of the most economically important native freshwater fish species in Indonesia. Nonetheless, the insufficient data regarding its salinity tolerance makes a thorough investigation of this issue imperative. This research was conducted to determine the effects of salinity on the growth and physiological response of Tor soro juveniles at optimum salinity levels. This study used Tor soro (total length: 5.0±0.08 cm; initial weight: 2.0 ± 0.06 g) with five salinity level treatments of, 0, 2, 4, 6, and 8 ppt, and the stocking density of 15 fish per aquarium (three replications). Fish were maintained for 30 days and fed with commercial aquafeed. In this study, the best growth was found in 2 ppt (length gain: 0.37 ± 0.05 cm; weight gain: 0.23 ± 0.01 g; specific growth rate in length: 1.38 ± 0.16 % day-1; specific growth rate in weight: 0.78 ± 0.05% day-1) which is significantly higher than 4, 6, and 8 ppt (p<0.05), but it is not significantly different from 0 ppt (p>0.05). The results of the physiological response showed that there were no significant stress responses in Tor soro juvenile for all salinity treatments (p>0.05). there was no effect of 2 ppt salinity on the growth parameters compared to controls, but salinities above ppt had a significant detrimental effect. Exposure to salinities did not have any stress effect as shown by physiological indicators.


Keywords


Tor soro; salinity; fish physiology; growth; fish stress

Full Text:

PDF

References


Agustin, T. S. (2016). The dynamic of water quality on the growth of African catfish (Clarias gariepinus) reared in earthen pond. Jurnal Ilmu Hewani Tropika, 5(1), 41–45.

Ain, S. N., Christianus, A., Ismail, A., Hassan, N. H., & Syukri, F. (2021). Salinity effect on fry development of hybrid Malaysian mahseer (Tor tambroides♂ x Barbonymus gonionotus♀. Songklanakarin Journal of Science & Technology, 43(3), 909-916.

Angadi, P., Das, M., & Roy, R. (2021). Effect of high salinity acclimation on glucose homeostasis in Mozambique tilapia (Oreochromis mossambicus). Fish Physiology and Biochemistry, 47(6), 2055-2065. https://doi.org/10.1007/s10695-021-01022-8

Arifin, O. Z., Subagja, J., Asih, S., & Kristanto, A. H. (2020). Budidaya Ikan Dewa. IPB Press.

Ath-thar, M. H. F., & Gustiano, R . (2010). Performance of Nile tilapia (BEST strain) on salinity media. Prosiding Forum Inovasi Teknologi Akuakultur, 7(3), 93-99.

Bœuf, G., & Payan, P. (2001). How should salinity influence fish growth?. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 130(4), 411-423.

Brevesa, J., O.Karlstrom, R., & Cormickab, S. D. M. (2014). Prolactin and teleost ionocytes: new insights into cellular and molecular targets of prolactin in vertebrate epithelia. General and Comparative Endocrinology, 203, 21–28. https://doi.org/10.1016/j.ygcen.2013.12.014

Copp, G. H. (2003). Is fish condition correlated with water conductivity?. Journal of Fish Biology, 63(1), 263-266.

Dahril, I., Tang, U. M., & Iskandar, P. (2017). Effects of different salinity on growth and survival rates of red tilapia (Oreochromis sp.) juveniles. Berkala Perikanan Terubuk, 45(3), 67–75. http://dx.doi.org/10.31258/terubuk.45.3.67-75.

Dennis, T. E., MacAvoy, S. E., Steg, M. B., & Bulger, A. J. (1995). The association of water chemistry variables and fish condition in streams of Shenandoah National Park (USA). Water, Air, and Soil Pollution, 85, 365-370.

Elarabany, N., Bahnasawy, M., Edrees, G., & Alkazagli, R. (2017). Effects of salinity on some haematological and biochemical parameters in Nile tilapia, Oreochromis niloticus. Agriculture, Forestry and Fisheries, 6(6), 200-205.

Fahrudin, A. E., Shadiq, S. J., & Harnawan, A. A. (2019). Establishment of wireless temperature, pH, and salinity monitoring system in the fish ponds. Jurnal Fisika FLUX, 1(1). http://dx.doi.org/10.20527/flux.v1i1.6156.

Gustiano, R., Kontara, E. K., Wahyuningsih, H., Subagja, J., Asih, S., & Saputra, A. (2013). Domestication of mahseer (Tor soro) in Indonesia. Communications in Agricultural and Applied Biological Sciences, 78(4), 165-168.

Holliday, F. G. T. (1969). The effects of salinity on the eggs and larvae of teleosts. In Fish physiology (Vol. 1, pp. 293-311). Academic Press. https://doi.org/10.1016/S1546-5098(08)60085-0

Iqbal, K. J., Qureshi, N. A., Ashraf, M., Rehman, M. H. U., Khan, N., Javid, A., Abbas, F., Mushtaq, M. M. H., Rasool, F., & Majeed, H. (2012). Effect of different salinity levels on growth and survival of Nile tilapia (Oreochromis niloticus). The Journal of Animal and Plant Sciences, 22(4), 919-922.

Jonsson, B., & Jonsson, N. (2014). Early environment influences later performance in fishes. Journal of Fish Biology, 85(2), 151-188. https://doi.org/10.1111/jfb.12432

Makori, A. J., Abuom, P. O., Kapiyo, R., Anyona, D. N., & Dida, G. O. (2017). Effects of water physico-chemical parameters on tilapia (Oreochromis niloticus) growth in earthen ponds in Teso North Sub-County, Busia County. Fisheries and Aquatic Sciences, 20(1), 1-10.

Mancera, J. M., & McCormick, S. D. (2019). Role of prolactin, growth hormone, insulin-like growth factor I and cortisol in teleost osmoregulation. In Fish osmoregulation (pp. 497-515). CRC Press.

Mattioli, C. C., Takata, R., Leme, F. D. O. P., Costa, D. C., Melillo Filho, R., e Silva, W. D. S., & Luz, R. K. (2017). The effects of acute and chronic exposure to water salinity on juveniles of the carnivorous freshwater catfish Lophiosilurus alexandri. Aquaculture, 481, 255-266. https://doi.org/10.1016/j.aquaculture.2017.08.016

Mohamed, N. A., Saad, M. F., Shukry, M., El-Keredy, A. M., Nasif, O., Van Doan, H., & Dawood, M. A. (2021). Physiological and ion changes of Nile tilapia (Oreochromis niloticus) under the effect of salinity stress. Aquaculture Reports, 19, 100567.

Mozanzadeh, M. T., Safari, O., Oosooli, R., Mehrjooyan, S., Najafabadi, M. Z., Hoseini, S. J., Saghavi, H., & Monem, J. (2021). The effect of salinity on growth performance, digestive and antioxidant enzymes, humoral immunity and stress indices in two euryhaline fish species: yellowfin seabream (Acanthopagrus latus) and Asian seabass (Lates calcarifer). Aquaculture, 534, 736329. https://doi.org/10.1016/j.aquaculture.2020.736329

Mst Khatun, H., Mostakim, G. M., & M Islam, S. (2020). Acute responses of spotted snakehead (Channa punctata) to salinity stress: A study of a freshwater fish to salinity challenges during intrusion of saline water. Iranian Journal of Fisheries Sciences, 19(5), 2673-2687. DOI: 10.22092/ijfs.2020.122590

Mubarik, M. S., Asad, F., Zahoor, M. K., Abid, A., Ali, T., Yaqub, S., Ahmad, S., & Qamer, S. (2019). Study on survival, growth, haematology and body composition of Cyprinus carpio under different acute and chronic salinity regimes. Saudi Journal of Biological Sciences, 26(5), 999-1002.

Patel, R. K., Verma, A. K., Krishnani, K. K., Sreedharan, K., & Chandrakant, M. H. (2022). Growth performance, physio-metabolic, and haemato-biochemical status of Labeo rohita (Hamilton, 1822) juveniles reared at varying salinity levels using inland saline groundwater. Aquaculture, 559, 738408.

Phuc, N. T. H., Mather, P. B., & Hurwood, D. A. (2017). Effects of sublethal salinity and temperature levels and their interaction on growth performance and hematological and hormonal levels in tra catfish (Pangasianodon hypophthalmus). Aquaculture International, 25, 1057-1071. https://doi.org/10.1007/s10499-016-0097-7

Prakoso, V. A., Kim, K. T., Min, B. H., Gustiano, R., & Chang, Y. J. (2015). Effects of salinity on oxygen consumption and blood properties of young grey mullets Mugil cephalus. Indonesian Aquaculture Journal, 10(2), 143-153. http://dx.doi.org/10.15578/iaj.10.2.2015.143-153

Prakoso, V. A., Ath-thar, M. H. F., Radona, D., & Kusmini, I. I. (2018). Growth response of striped snakehead (Channa striata) juveniles reared under salinity conditions. Limnotek: perairan darat tropis di Indonesia, 25(1). http://dx.doi.org/10.14203/limnotek.v25i1.171.

Prakoso, V. A., Pouil, S., Prabowo, M. N. I., Sundari, S., Arifin, O. Z., Subagja, J., Affandi, R., Kristanto, A. H., & Slembrouck, J. (2019). Effects of temperature on the zootechnical performances and physiology of giant gourami (Osphronemus goramy) larvae. Aquaculture, 510, 160-168.

Qudus, R. R., Lili, W., & Rosidah. (2012). Effect of different rearing density on growth and survival rate of torsoro (Tor soro). Jurnal Perikanan dan Kelautan, 3(4), 253–260.

Radona, D., Subagja, J., & Arifin, O. Z. (2015). Performance of reproductive aspects of broodstock and growth of seed of Tor soro, Tor douronensis, and their reciprocal crosses. Jurnal Riset Akuakultur, 10(3), 1. http://dx.doi.org/10.15578/jra.10.3.2015.335-343.

Rahmawati, Y. A., Anggoro, S., & Subiyanto. (2013). Domestication of red claw crayfish (Cherax quadricarinatus) through media and feed optimisation. Management of Aquatic Resources Journal (MAQUARES), 2(3), 128-137. https://doi.org/10.14710/marj.v2i3.4195.

Ramee, S. W., Lipscomb, T. N., & DiMaggio, M. A. (2020). Evaluation of the effect of larval stocking density, salinity, and temperature on stress response and sex differentiation in the dwarf gourami and rosy barb. Aquaculture Reports, 16, 100287.

Saravanan, M., Ramesh, M., Petkam, R., & Poopal, R. K. (2018). Influence of environmental salinity and cortisol pretreatment on gill Na+/K+−ATPase activity and survival and growth rates in Cyprinus carpio. Aquaculture Reports, 11, 1-7. https://doi.org/10.1016/j.aqrep.2018.04.002

Shreck, C. B., & Tort, L. (2016). The Concept of Stress in Fish. Fish Physiology, 35, 4–6. https://doi.org/10.1016/B978-0-12-802728-8.00001-1

Sneddon, L. U., Wolfenden, D. C. C., & Thomson, J. S. (2016). Stress management and welfare. In Fish Physiology (p. 502). Elsevier. https://doi.org/10.1016/B978-0-12-802728-8.00012-6

Takei, Y., & Balment, R. J. (2009). The neuroendocrine regulation of fluid intake and fluid balance. Fish physiology, 28, 365-419. https://doi.org/10.1016/S1546-5098(09)28008-3

Wedemeyer, G. (1996). Physiology of fish in intensive culture systems. Springer Science & Business Media. https://doi.org/10.1007/978-1-4615-6011-1

Widyastuti, Y. R., Setiadi, E., & Yosmaniar, Y. (2021). The effect of rearing media salinity on survival, growth, and blood glucose of juvenile mahseer (Tor soro). In E3S Web of Conferences (Vol. 322, p. 02017). EDP Sciences.

Yada, T., & Tort, L. (2016). Stress and disease resistance : immune system and immunoendocrine interactions. In Fish Physiology (pp. 386–387). Elsevier. https://doi.org/10.1016/B978-0-12-802728-8.00010-2.

Yu, J., Wen, X., You, C., Wang, S., Chen, C., Douglas, Tocher, & Li, Y. (2021). Comparison of the growth performance and Long-Chain Polyunsaturated Fatty Acids (LC-PUFA) biosynthetic ability of red tilapia (Oreochromis mossambicus♀ × O. niloticus♂) fed fish oil or vegetable oil diet at different salinities. Aquaculture, 542(736899). https://doi.org/10.1016/j.aquaculture.2021.736899.

Yunus, M., Muarif, M., & Nafiqoh, N. (2020). Blood glucose and hemoglobin response of giant gourami (Osphronemus gouramy) towards maintenance media with salinity levels of 0, 3, 6, and 9 ppt. Jurnal Mina Sains, 6(2), 93-93. https://doi.org/10.30997/jmss.v6i2.3299.

Zakiah, A. F. (2016). Analysis of mitochondrial DNA and protein profiles of several Indonesian freshwater fish. Thesis. Department of Aquatic Product Technology. Faculty of Fisheries and Marine Sciences, IPB University, Bogor.




DOI: http://dx.doi.org/10.15578/iaj.18.1.2023.71-77

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Creative Commons License
Indonesian Aquaculture Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats
p-ISSN: 0215-0883
e-ISSN: 2502-6577

 

Hasil gambar untuk isjd